Overview and Comparisons of Long-Term Financial Risk Models

Roger Kaufmann, Pierre Patie
RiskLab
ETH Zürich

October 20, 2000

http://www.risklab.ch/Projects.html#SLTFR
http://www.math.ethz.ch/~kaufmann
http://www.math.ethz.ch/~patie

Aim of the project

I Introduction

- Aim of the project

- Key questions

- Risk measures

- Measurement of long-term financial risk of investment portfolios.

First steps:

- Modelling the stochastic evolution of risk factors associated to portfolio positions.

- Test the goodness of such models for a long time horizon (e.g. 1 year).
Risk measure definition

We consider as risk measure the expected shortfall.

Definition 1 The expected shortfall \(ES_\alpha \) at a level \(\alpha \) is defined by

\[
ES_\alpha (R) = -\mathbb{E}[R | R < -\text{VaR}_\alpha (R)], \text{ where } R \in L^1(\Omega).
\]

Definition 2 Given \(\alpha \in]0,1[\), the value-at-risk \(\text{VaR}_\alpha \) at level \(\alpha \) of the returns \(R \) with distribution \(\mathbb{P} \), is

\[
\text{VaR}_\alpha (R) = \inf\{x \in \mathbb{R} | \mathbb{P}[R \leq x] \geq \alpha\},
\]

i.e. \(\text{VaR} \) is the negative of the \(\alpha \)-quantile of \(R \).

The expected shortfall is a coherent risk measure in the sense of Artzner, Delbaen, Eber and Heath. In general, value-at-risk is not !

Key questions

1. Which frequency do we use to fit models?
 - Are long datasets stationary?
 - What are the statistical restrictions? (lack of yearly returns)
 - How can we keep as much information as possible?

2. Do the properties of financial data change when we choose another time horizon?

3. What is the reliability of the time aggregation rule of each model if there is any?

4. How can we compare different time horizons and models?

Model Description

- Random Walk
- GARCH(1,1)
- Heavy-tailed distribution
Random Walk

Assumption 1: expected log returns are equal to zero

\[E[r_{t+1}] = 0. \]

Assumption 2: Normally distributed, independent log returns with standard deviation \(\sigma \) in each period \([t, t+1]\).

\[\text{Ass. 1 \& 2 } \Rightarrow r_{t+1} \overset{iid}{\sim} N(0, \sigma^2). \]

→ The logarithmic asset price follows a random walk with zero drift.

Time aggregation:

\[r_{h,t} := \sum_{i=0}^{h-1} r_{t-i} \overset{iid}{\sim} N(0, h\sigma^2). \]

GARCH(1,1)

Let \((X_t, t \in \mathbb{N})\) be a strictly stationary time series representing observations of centered log returns on a financial asset price.

A GARCH(1,1) model for \(X \) is defined by

\[X_t = \sigma_t \epsilon_t \quad \text{for } t \in \mathbb{N}, \]

\[\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2, \]

\[\epsilon_t \overset{iid}{\sim} N(0, 1). \]

Stationarity conditions:

\[0 < \alpha_0 < \infty, \alpha_1 \geq 0, \beta_1 \geq 0 \text{ and } \alpha_1 + \beta_1 < 1. \]

Fit the GARCH(1,1) process by pseudo-maximum-likelihood estimation to obtain the value of the parameters of the conditional volatility.

Time aggregation: GARCH coefficients function

Assume: Centered 1-day log returns \(X_t \) follow a GARCH(1,1) process with a normally distributed innovation.

\[X_t = \sigma_t \epsilon_t, \]

\[\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2, \]

\[\epsilon_t \overset{iid}{\sim} N(0,1). \]

Drost-Nijman:

\[X_{h,t} := \sum_{i=0}^{h-1} X_{t-i} \text{ is weak GARCH}(1,1): \]

\[X_{h,t} = \sigma_{h,t} \epsilon_{h,t}, \]

\[\sigma_{h,t}^2 = \alpha_{h,0} + \alpha_{h,1} X_{h,t-1}^2 + \beta_{h,1} \sigma_{h,t-1}^2, \]

\[\epsilon_{h,t} \overset{iid}{\sim} N(0,1), \]

\[\alpha_{h,1} \to 0, \beta_{h,1} \to 0 \text{ as } h \to \infty. \]

Heavy-tailed distributions

We consider \((r_t, t \in \mathbb{N})\) to be independent and identically distributed (i.i.d.), representing observations of the log returns on a financial asset price.

We assume

\[P[r_t < -x] = C x^{-\alpha} L(x) \quad \text{as } x \to \infty, \quad (1) \]

where \(C, \alpha \in \mathbb{R}^+ \) and \(L \) is a slowly varying function, i.e.

\[\forall t > 0 : \lim_{x \to \infty} \frac{L(tx)}{L(x)} = 1. \]

Distributions satisfying (1) are called heavy-tailed distributions since the \(k \)th moment is infinite for \(k > \alpha \). (1) is also a characterisation of the maximum domain of attraction of the Fréchet distribution.
Time aggregation

Feller’s theorem (1971)

Theorem: Assuming that \((r_t, t \in \mathbb{N})\) have heavy-tailed distributions leads to
\[
P \left[\sum_{i=1}^{h} r_t < -x \right] = hCL(x)x^{-\alpha}[1 + o(1)], \text{ for } x \to \infty,
\]
where the scale factor \(C\) is as in (1).

\(\sum_{i=1}^{h} r_t\) corresponds to the \(h\)-day log returns. When applicable, this theorem supplements the central limit theorem by providing information concerning the tails.

Dacorogna, Müller, Pictet and de Vries show the following theorem:

Suppose \(r\) has a finite variance (i.e. \(\alpha > 2\)). At a constant risk level \(p\), increasing the time horizon \(h\) increases the VaR and the expected shortfall numbers for the heavy tailed model by a factor \(h^{\frac{1}{\alpha}}\).

III Backtesting Idea

- Model comparison
- Backtesting description

Backtesting: Test Description

Idea: compare forecasted expected shortfall \(\hat{ES}_{t,\alpha}\) with empirical estimation of expected shortfall.

Measure 1: Evaluate values below the negative of the estimated value-at-risk \(\hat{VaR}_{t,\alpha}\).

We build the difference between the real (i.e. observed) one-year returns \(R_{t+1}\) and the negative of the estimation \(\hat{ES}_{t,\alpha}\).

We calculate the conditional average of these differences, conditioned on \(\{R_{t+1} < -\hat{VaR}_{t,\alpha}\}\),
\[
V_{1}^{\hat{ES}} = \frac{\sum_{t=1}^{T} (R_{t+1} - (-\hat{ES}_{t,\alpha})) \mathbb{1}_{\{R_{t+1} < -\hat{VaR}_{t,\alpha}\}}}{\sum_{t=1}^{T} \mathbb{1}_{\{R_{t+1} < -\hat{VaR}_{t,\alpha}\}}}
\]

A good estimation for expected shortfall will lead to a low absolute value of \(V_{1}^{\hat{ES}}\).
Measure 2: Evaluate values below the “1 in 1/α event” (for α = 1%/one in hundred event).

We build the difference between the real (i.e. observed) one-year return R_{t+1} and the negative of the estimation $\overline{E}_{t,\alpha}$:

$$D_t := R_{t+1} - (-\overline{E}_{t,\alpha}).$$

We calculate the conditional average of these differences, conditioned on $\{D_t < D^\alpha\}$,

$$V_{2ES} = \frac{1}{\sum_{t=0}^{t_1} 1\{D_t < D^\alpha\}} \sum_{t=0}^{t_1} \frac{1}{\sum_{t=0}^{t_1} 1\{D_t < D^\alpha\}},$$

where D^α denotes the empirical α quantile of $\{D_t\}_{t=0}^{t_1}$.

A good estimation for expected shortfall will lead to a low absolute value of V_{2ES}.

We evaluate two additional measures that provide information about the goodness of our estimators:

- **Frequency of exceedance**

 Calculate the percentage of times the observed returns fall below the negative VaR estimate:

 $$V_{freq} = \frac{1}{t_1 - t_0 + 1} \sum_{t=t_0}^{t_1} 1\{R_{t+1} < -VaR_{t,\alpha}\}.$$

- **Relative amount of exceedance**

 Relative size of values exceeding VaR:

 $$V_{size} = \frac{\sum_{t=t_0}^{t_1} R_{t+1} - (-VaR_{t,\alpha}) 1\{R_{t+1} < -VaR_{t,\alpha}\}}{\sum_{t=t_0}^{t_1} 1\{R_{t+1} < -VaR_{t,\alpha}\}}.$$

Normal Distribution

We assume for the h-day log returns:

$$r_h \sim N(0, \sigma_h^2).$$

We estimate the one year expected shortfall at a level p by:

$$\overline{E}_{t}^p (r) = \sqrt{\frac{261}{h} \sigma_{t,h}^2 \varphi(x_p) / p},$$

where:

$$x_p : p-quantile of a standard normal random variable,$$

$$\varphi : \text{density of a standard normal random variable},$$

$$\sigma_{t,h}^2 = \frac{1}{N-1} \sum_{i=0}^{N-1} (r_{t-i,h})^2,$$

the h-day sample variance.
GARCH(1,1)

A GARCH(1,1) model with normally distributed
innovation process for the h-day log returns \(r_h \)

is defined by

\[
\begin{align*}
 r_{t,h} &= \sigma_{t,h} \epsilon_t \quad \text{for } t \in \mathbb{N}, \\
 \sigma_{t,h}^2 &= \alpha_0 + \alpha_1 r_{t-1,h}^2 + \beta_1 \sigma_{t-1,h}^2,
\end{align*}
\]

where \(\epsilon_t \) \ iid \ \sim \mathcal{N}(0, 1).

We estimate the 1 year expected shortfall
at a level \(p \) in 4 steps:

1. we fit the GARCH(1,1) process with
the h-day log returns,

2. we apply the Drost-Nijman rule (scaling
rule) to get the parameters of the yearly
conditional volatility,

3. we forecast the yearly volatility using
the following recursive relation:

\[
\sigma_{t+1,y}^2 = \sigma_{0,y} + \sigma_{1,y} r_{t,y}^2 + \sigma_{2,y} r_{t,y}^2,
\]

starting with \(\sigma_{1,y}^2 = \frac{261}{n} \sum_{i=1}^{N} (r_i - \bar{r})^2
\),

4. \(E\bar{s}_p^p(r) = \sigma_{1,y}^2 \frac{\sqrt{\pi}}{p} \),

\(\odot \odot 2000 \) (R. Kaufmann and P. Patle, RiskLab) 20

Heavy Tailed Distribution

We assume the h-day log returns to be inde-
pendent, further

\[
\mathbb{P}[r_1 < -x] = Cx^{-\alpha} L(x) \quad \text{as } x \to \infty,
\]

where \(C, \alpha \in \mathbb{R}^+ \) and

\(L \) is a slowly varying function.

By inverting (2) and using the scaling rule for
heavy tailed distributions (Feller’s theorem) we can
easily derive estimates for the one year
expected shortfall at a level \(p \):

\[
E\bar{s}_p^p = \left(\frac{261}{h} \right)^{1/2} \frac{1}{\alpha} \left(\frac{\tilde{\alpha}_k N}{\tilde{\alpha}_k N - 1} \right) \frac{\tilde{x}_p^p}{\tilde{\alpha}_k N}, \quad \tilde{\alpha}_k > 1,
\]

where

\[
\tilde{x}_p^p = \sum_{i=1}^{N} \log \left(\frac{r_i N}{\tilde{\alpha}_k N} \right) \quad \text{(Hill estimator)},
\]

\(N \) is the sample size,

\(\tilde{\alpha}_k \) is the \(k \)th order statistics.

\(\odot \odot 2000 \) (R. Kaufmann and P. Patle, RiskLab) 21

Backtesting in Action

Problem: Not enough yearly data for estimat-
ing model parameters and proceeding the back-
testing!

Solution: We use 22 stock samples (German
stocks), each containing 23.5 years of data,
we carry out the backtesting on each sample inde-
pendently, then we aggregate the results.

For each sample we proceed as follows:

1. for each model we estimate the yearly fore-
casted expected shortfall \(E\bar{s}_p^p \) on a window
of size \(N \) (e.g. \(N=2000 \) daily data). We
also use non-overlapping data for lower
frequency,

2. we compare the estimates with the follow-
ng returns \(R_{t+1} \) using different measures,

3. we move the window by one, then we re-
peat steps 1 and 2 up to the end of the whole dataset.

Backtesting Measures

Measure 1: Evaluate values below the negative
of the estimated value-at-risk \(\bar{VaR}^p \):

\[
V_1^{\bar{ES}} = \frac{\sum_{i=0}^{t-1} (R_{t+1} - (- \bar{VaR}^p))}{\sum_{i=0}^{t-1} [R_{t+1} < -\bar{VaR}^p]},
\]

Measure 2: Evaluate values below the “1 in
1/\alpha event” (for \(\alpha = 1/6 \): one in hundred
event):

\[
V_2^{\bar{ES}} = \frac{\sum_{i=0}^{t-1} D_1}{\sum_{i=0}^{t-1} [D_t < D_{\alpha}]},
\]

where \(D_{\alpha} \) is the \(\alpha \) quantile of \(\{D_t\}_{t=0}^{t-1} \).

Frequency of exceedance:

\[
V^{freq} = \left(\frac{1}{\tilde{\alpha}_k N} \sum_{i=0}^{t-1} \frac{R_{t+1} - (- \bar{VaR}^p)}{\sum_{i=0}^{t-1} [R_{t+1} < -\bar{VaR}^p]} \right) \quad (\text{for } \bar{VaR}^p).
\]

Relative amount of exceedance:

\[
V^{size} = \left(\frac{1}{\tilde{\alpha}_k N} \sum_{i=0}^{t-1} \frac{R_{t+1} - (- \bar{VaR}^p)}{\sum_{i=0}^{t-1} [R_{t+1} < -\bar{VaR}^p]} \right) \quad (\text{for } \bar{VaR}^p).
\]

\(\odot \odot 2000 \) (R. Kaufmann and P. Patle, RiskLab) 22

© 2000 (R. Kaufmann and P. Patle, RiskLab) 23
The 5% One Year Expected Shortfall

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq</th>
<th>ν_{ES}</th>
<th>ν_{2}</th>
<th>ν_{freq}</th>
<th>ν_{size}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>1</td>
<td>6.4</td>
<td>10.9</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.3</td>
<td>7.2</td>
<td>3.2</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.7</td>
<td>6.8</td>
<td>4.1</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>1.9</td>
<td>2.2</td>
<td>5.4</td>
<td>30.7</td>
</tr>
<tr>
<td>GARCH</td>
<td>1</td>
<td>-2.7</td>
<td>-7.4</td>
<td>8.6</td>
<td>-42.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-2.5</td>
<td>-6.8</td>
<td>8.2</td>
<td>-40.9</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-2.7</td>
<td>-6.5</td>
<td>7.7</td>
<td>-41.2</td>
</tr>
<tr>
<td>HT</td>
<td>1</td>
<td>1.6</td>
<td>5.3</td>
<td>7.8</td>
<td>40.5</td>
</tr>
</tbody>
</table>

Backtesting Results
22 backtesting samples of length 3884 each.

<table>
<thead>
<tr>
<th>Freq</th>
<th>N</th>
<th>N GARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000</td>
<td>3070</td>
</tr>
<tr>
<td>5</td>
<td>400</td>
<td>614</td>
</tr>
<tr>
<td>22</td>
<td>90</td>
<td>139</td>
</tr>
<tr>
<td>65</td>
<td>30</td>
<td>47</td>
</tr>
<tr>
<td>261</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

Number of data used with respect to the frequency (in days).

Conclusions

- The Normal approach gives good results but only for low frequency (i.e. more than 3 months). This may come from the fact that low frequency data get closer to the normal distribution. Also the square root of time rule does not suit for high frequency data. It leads to overestimation of the risk.

- Heavy tailed distributions perform well for high frequency data (daily data).

- GARCH underestimates the risk: problem of stationarity, or – as for the Normal approach – the scaling rule does not perform well for high frequency data (in the opposite way).

Next steps:
- investigate the Normal inverse Gaussian distribution,
- consider the problem of risk aggregation.

References

http://www.risklab.ch/Projects.html#SLTFR