An Intensity Based Non-Parametric Default Model for Residential Mortgage Portfolios

Enrico De Giorgi, RiskLab, ETH Zurich

joint work with Vlatka Komaric, Credit Suisse Group

Risk Day 2001, Zurich
October 19, 2001

E-mail: degiorgi@math.ethz.ch
Homepage: http://www.math.ethz.ch/~degiorgi/
RiskLab: http://www.risklab.ch
An Intensity Based Non-Parametric Default Model for Residential Mortgage Portfolios

Part 1

I Introduction
II Definitions

Part 2

III The model
IV Estimation methodology
V Data set and results
VI Conclusion
Introduction

• In April 2001 Swiss banks held over CHF 500 billion of debt in form of mortgages (about 63% of the total loan portfolios value held by Swiss banks).

• Estimated Swiss real estate market value is between 2300 and 2800 billion CHF (more than twice the market capitalization of all stocks included in Swiss Performance Index).

• About 86% of Swiss real estate are in the hands of private individuals.

• Not much research was done in this area so far: Lack of information, confidentiality, old and insufficient data, mortgages are regarded as a "low risk" product in Switzerland.
Mortgage characteristics

A mortgage is a loan secured by a real estate property. The purpose of the private clients is to finance the property. We have the following traditional products:

- **Adjusted-rate and term (ARM):**
 - no fixed maturity, interest rate follows market, but with a lag and is subject to politics;
 - prepayment is free for the clients (embedded option).

- **Fixed-rate and term:**
 - maturity and interest rate are fixed by the issue of the mortgage;
 - maturity usually of 2-5 years;
 - prepayment costs are charged to clients.
Default event

Definition. An obligor is said to default at time T if he loses the ability to make the next interest payment. Define the default indicator process for $t \geq 0$ by

$$X_t \overset{\text{def}}{=} 1\{T \leq t\} = \begin{cases} 1 & \text{default prior to time } t, \\ 0 & \text{else.} \end{cases}$$

The observation of default is censored, it is observed only if the payment fails over a period of fixed length (usually 90 days) after it was due.

Common reasons for default

- unemployment;
- divorce;
- significantly interest rate increase.
Conditional intensity process

Let \(Y_i = (Y_{i,1}, \ldots, Y_{i,p}) \), \(Y_{i,q} = (Y_{i,q}(t))_{t \geq 0} \) be a collection of predictors for obligor \(i \), \(i = 1, \ldots, n \).

\(\mathcal{F}_{i,t} = \sigma(Y_{i,s} : s \leq t) \) is the \(\sigma \)-algebra generated by \(\tilde{Y}_{i,t} = (Y_{i,s})_{0 \leq s \leq t} \).

\(\mathcal{D}_{i,t} = \sigma(X_{i,s} : s \leq t) \) is the \(\sigma \)-algebra generated by the default indicator \(X_i = (X_{i,s})_{t \geq 0} \) of obligor \(i \).

We define the enlarged filtration \(\mathcal{G}_i = (\mathcal{G}_{i,t})_{t \geq 0} \) by \(\mathcal{G}_{i,t} = \mathcal{F}_{i,t} \lor \mathcal{D}_{i,t} \).

Definition. Let \(\mathcal{F}_i = (\mathcal{F}_{i,t})_{t \geq 0} \) be the flow of information from the predictors for obligor \(i \). The **conditional intensity process** of the time to default \(T_i \) given \(\mathcal{F}_i \), is the nonnegative, \(\mathcal{F}_i \)-predictable process \(\lambda_{i}^{\mathcal{F}_i} \) such that the process \(M_i = (M_{i,t})_{t \geq 0} \) defined by

\[
M_{i,t} = X_{i,t} - \int_{0}^{t \wedge T_i} \lambda_{i,u}^{\mathcal{F}_i} \, du
\]

is a \(\mathcal{G}_i \)-martingale.

©2001 (E. De Giorgi, RiskLab) 5
Properties of the conditional intensity process $\lambda_{i,t}^{\text{F}_i}$

Let $S_i(t \mid \mathcal{F}_{i,t}) = \mathbb{P}[T_i > t \mid \mathcal{F}_{i,t}]$ be the conditional survival probability and $f_i(t \mid \mathcal{F}_{i,t}) = \lim_{s \downarrow 0} \frac{1}{s} \mathbb{P}[T_i \in (t, t + s) \mid \mathcal{F}_{i,t}]$ be the conditional density function of T_i.

Under technical conditions, $\lambda_{i,t}^{\text{F}_i}$ and f_i exist, and we have

- $\lim_{s \downarrow 0} \frac{1}{s} \mathbb{P}[T_i \in (t, t + s) \mid \mathcal{G}_{i,t}] = 1_{\{T_i > t\}} \lambda_{i,t}^{\text{F}_i}$.

- $\lambda_{i,t}^{\text{F}_i} = \frac{f_i(t \mid \mathcal{F}_{i,t})}{S_i(t \mid \mathcal{F}_{i,t})}$.

- $S_i(t \mid \mathcal{F}_{i,t}) = \exp \left(- \int_{d_i}^{t \vee d_i} \lambda_{i,u}^{\text{F}_i} du \right)$ where $d_i = \text{time of issue}$.

On the set $\{T_i > t\}$ and for $\Delta t \ll 1$, $\lambda_{i,t}^{\text{F}_i} \Delta t$ approximates the conditional probability that a default occurs during $(t, t + \Delta t)$.
Overview of the model

- Form homogeneous groups characterized by their credit rating.

- Model time-to-default as the first jump-time of an inhomogeneous Poisson process with stochastic intensity (doubly stochastic Poisson process or Cox process).

- Link the intensity to explaining factors (economic environment, mortgage characteristics, obligor characteristics).

- Given a realization of explaining factors, suppose individual defaults occur independently.

- Fit the model to a mortgage portfolio for determining the form of the linking functions.
The model

Let $Y_i = (Y_{i,1}, \ldots, Y_{i,p})$, $Y_{i,q} = (Y_{i,q}(t))_{t \geq 0}$ be a collection of predictors for the intensity process λ^F_i for obligor i. We model λ^F_i as a function of Y_i.

We suppose that

$$\lambda^F_{i,t} = \lambda_{i,0} h_{i,0}(t - d_i) \prod_{q=1}^{p} h_{i,q}(Y_{i,q}(t)).$$

We write $\lambda^F_{i,t} = \lambda^F_{i,t}(\theta_i; Y_{i,t})$ where $\theta_i = (\log \lambda_{i,0}, \log h_{i,0}, \ldots, \log h_{i,p})$.

Here $h_{i,0}, h_{i,1}, \ldots, h_{i,p}$ are the link functions to be estimated later.

Let $\eta^F_{i,t}(\theta_i; Y_{i,t}) = \log \lambda^F_{i,t}(\theta_i; Y_{i,t})$. Then we obtain

$$\eta^F_{i,t}(\theta_i; Y_{i,t}) = \log \lambda_{i,0} + \log h_{i,0}(t - d_i) + \sum_{q=1}^{p} \log h_{i,q}(Y_{i,q}(t)).$$

We suppose that $\mathbb{E}\left[\log h_{i,q}(Y_{i,q}(t))\right] = 0$ for $i = 1, \ldots, n$, $q = 1, \ldots, p$.

©2001 (E. De Giorgi, RiskLab)
Assumptions

• The θ_i’s are the same for all obligors in the same rating class.
 \Rightarrow Functional form depends only on the rating class.

• Given $T_i > t$, the conditional probability that obligor i will survive time $t+s$ for $s > 0$ depends on the history only through the predictors at time t.
 \Rightarrow Treats all the outstanding mortgages at time t in the same way.

• Given the predictors up to time t, defaults of obligors up to time t are conditionally independent.
 \Rightarrow Dependence structure is totally described by the predictors.
Estimation of the model for one rating class

- $\theta = (\log \lambda_0, \log h_0, \log h_1, \ldots, \log h_p)$ are the same for every obligor.

- Group obligors such that their predictors Y_i and their time of issue d_i are identical in every group (J groups).

- Let $0 = t_0 < t_1 < \cdots < t_m = T$.

- $O_{j,l} =$ number of outstanding mortgages during $(t_l, t_{l+1}]$ in group j.

- $D_{j,l} =$ number of mortgages defaulted during $(t_l, t_{l+1}]$ in group j.

[Diagram of time periods $t_0, t_1, t_2, \ldots, t_m = T$ with markers for repayment (RP) and default (X).]

©2001 (E. De Giorgi, RiskLab)
Conditional likelihood function of the discretized model

Assuming that \(\lambda \) and the predictors are constant on \([t_l, t_{l+1})\), then on the set \(\{T_i > t_l\} \) for obligor \(i \) in group \(j \) and \(Y_j = y_j \) we have

\[
\begin{align*}
\mathbb{P}[T_i \in (t_l, t_{l+1}] | G_{i,t_l}] &= \frac{\mathbb{P}[T_i \in (t_l, t_{l+1}] | F_{j,t_l}]}{\mathbb{P}[T_i > t_l | F_{j,t_l}]} \\
&= \frac{S(t_l | F_{j,t_l}) - \mathbb{P}[T_i > t_{l+1} | F_{j,t_l}]}{S(t_l | F_{j,t_l})} \\
&= 1 - \exp\left(- (t_{l+1} - t_l) \lambda_t(\theta; y_j,t_l)\right) \\
&\overset{\text{def}}{=} u_{j,l}(\theta).
\end{align*}
\]

The likelihood function for the observation is thus given by

\[
L(\theta) = \prod_{l=0}^{m-1} \prod_{j=1}^{J} \binom{O_{j,l}}{D_{j,l}} u_{j,l}(\theta)^{D_{j,l}} (1 - u_{j,l}(\theta))^{O_{j,l} - D_{j,l}}.
\]

\(\text{binomial distribution} \)
Generalized additive model (GAM)

Let V be a real random variable. Let $\mathbf{Y} = (Y_1, \ldots, Y_p)$ be a set of predictors. Given \mathbf{Y}, V has the conditional distribution function F_Y with $\mu(\mathbf{Y}) = \mathbb{E}[V | \mathbf{Y}]$. We assume that for functions f_1, \ldots, f_p, we have

$$G(\mu(\mathbf{Y})) = \eta(\mathbf{Y}) = \alpha + \sum_{q=1}^{p} f_q(Y_q)$$

where G is the link function, $\mathbb{E}[f_q(Y_q)] = 0$ for $q = 1, \ldots, p$.

η is called an additive form, $\theta = (\alpha, f_1, \ldots, f_p)$ are the unknown parameters to be estimated. The triple (η, G, F_Y) is called a GAM.

Remarks

- If all the f_q's are linear functions, then (η, G, F_Y) is called a generalized linear model (GLM).
- For observations $(V_i)_{i=1,\ldots,M}$ we need $V_i | \mathbf{Y}_i \sim F_{Y_i}$, independently.
- The GAM serves as a diagnostic tool for suggesting transformations of the predictors.
GAM estimation

If $V \mid Y \sim F_Y$ has an exponential family density

$$f_Y(v; \xi, \phi) = \exp \left\{ \frac{v \xi - b(\xi)}{a(\phi)} + c(v, \phi) \right\}, \quad v \in \text{support}(F_Y)$$

where ξ is the natural parameter ($b'(\xi) = \mu$) depending on Y, and ϕ is the dispersion parameter, then the local scoring algorithm with backfitting can be applied to solve the GAM (Hastie and Tibshirani, 1990).

Remarks

- $F_Y = \text{binomial}(n, p(Y))$ is an exponential family density with $\phi = 1$.
- The local scoring algorithm maximizes the likelihood function by a modified Newton-Raphson procedure.
- The local scoring algorithm converges for cubic smoothing splines.
Backfitting algorithm

Let $G = id$ and (η, id, F_Y) the simple additive model, with F_Y an exponential family density. We have for $i = 1, \ldots, M$

$$V_i = \alpha + \sum_{q=1}^{p} f_q(Y_{i,q}) + \epsilon_i,$$

where $\epsilon_i = V_i - \mathbb{E}[V_i | Y]$. The backfitting algorithm proceeds as follows:

- Initialization $r = 0$: $\hat{f}_q^0 \equiv 0$ for $q = 1, \ldots, p$, $\hat{\alpha}^0 = \frac{1}{M} \sum_{i=1}^{M} V_i$.

- Iteration $r \to r + 1$: cycle over $q = 1, \ldots, p$

$$\hat{f}_q^{r+1} = S^\lambda_q \left(V_i - \hat{\alpha}^r - \sum_{q'=1}^{q-1} \hat{f}_{q'}^{r+1}(Y_{i,q'}) - \sum_{q'=q+1}^{p} \hat{f}_{q'}^{r}(Y_{i,q'}) \bigg| Y_q \right)_{i=1,\ldots,M}$$

until $\max_{i=1,\ldots,M} |\hat{f}_q^{r+1}(Y_{i,q}) - \hat{f}_q^{r}(Y_{i,q})|$ is small enough.

S^λ_q denotes a smoothing operator (linear) with smoothing factor λ.

©2001 (E. De Giorgi, RiskLab)
Stepwise selection technique

• Choice of the smoothing method (smoothing spline, local regression, kernel regression,...).

• For each function \(f_q \) define a set \(\Theta_q \) of alternatives of increasing complexity for the corresponding smoothing operator \(S^\lambda_q \), in terms of the number of degrees of freedom \(df \) (\(df = 0 \) for one \(S^\lambda_q \) means that \(f_q \equiv 0 \), \(df = 1 \) means \(f_q \) linear).

• Let \(\hat{\theta}_1 \in \Theta = \mathbb{R} \times \Theta_1 \times \cdots \times \Theta_p \). Define \(\hat{\theta}_2 \) by increasing the complexity one step forward in \(\Theta_{q'} \) for exactly one \(q' = 1, \ldots, p \) in \(\hat{\theta}_1 \) (\(\hat{\theta}_1, \hat{\theta}_2 \) are nested models).

• Compare the two models by testing the null hypothesis \(H_0 : \theta = \hat{\theta}_1 \) against the alternative \(H_A : \theta = \hat{\theta}_2 \) using a \(\chi^2 \)-test.
Akaike information criterion

Let \((\eta, G, F_Y)\) be a GAM and let \(F_Y\) be an exponential family density with dispersion parameter \(\phi\).

We define the Akaike information criterion for the model \(\hat{\theta} \in \Theta\) by

\[
AIC_{\hat{\theta}} = D(\hat{\theta}; v) + 2 \phi df_{\hat{\theta}},
\]

where \(df_{\hat{\theta}}\) is the number of degrees of freedom of the model.

- \(AIC\) is a penalized version of the deviance \(D\).
- \(AIC\) accounts for the number of degrees of freedom used by the smoothers.
- Usually a lower \(AIC\) implies that the model fits better than another.
- \(AIC\) offers a criterion for comparing two models \(\hat{\theta}_1, \hat{\theta}_2 \in \Theta\), nested or non-nested.
- No specific statistical test is associated with comparing \(AIC\)’s.
Reformulation of the default model as GAM

Let

\[V_{j,l} = \frac{D_{j,l}}{O_{j,l}} \]

\[u_{j,l}(\theta) = 1 - \exp\left(-(t_{l+1} - t_l) \lambda(t_l, \theta | y_j, t_l) \right) \]

then

\[V_{j,l} \sim \frac{1}{O_{j,l}} \text{binomial}(O_{j,l}, u_{j,l}(\theta)) \]

\[G(u_{j,l}(\theta)) = \log \lambda_0 + \log h_0(t - d_j) + \sum_{q=1}^{p} \log h_q(y_j, q(t_l)) \]

where \(u_{j,l}(\theta) = \mathbb{E}_{\theta}[V_{j,l} | y_j, t_l] \) and \(G : (0, 1) \rightarrow \mathbb{R}, \mu \mapsto \log(-\log(1 - \mu)) \) is the link function (the complementary log-log-function).

\(\Rightarrow \) Generalized additive model.
Data set

- Sub-portfolio \mathcal{P} with 73683 Swiss residential mortgages.
- $t_0 = 1$st quarter 1994, $t_m = 4$th quarter 2000.
- Observation of \mathcal{P} follows at the end of each quarter (March 31, June 30, September 30, December 31).
- The mortgage product and the mortgage interest rate r_{i,t_l} applied during the quarter $[t_{l-1}, t_l)$ are available for $i = 1, \ldots, 73683$ and $l = 1, \ldots, m$.
- Obligors belongs to 26 different economic and political regions (26 cantons).
- Two rating classes are considered: A=higher rating and B=lower rating.
Predictors

For obligor \(i = 1, \ldots, 73683 \) we use the following predictors.

- **Quarter of the year** \(Y_{i,0} \): \(Y_{i,0}(t_l) = k \), if \(t_l \) is the \(k \)-th quarter.

- **Quarterly regional unemployment rate** \(Y_{w,1} \), if obligor \(i \) lives in region \(w = 1, \ldots, 26 \).

- **Lags** of \(1, \ldots, 16 \) quarters for the regional unemployment rate are considered (notation: \(Y_{w,1}^{(r)} \), \(w = 1, \ldots, 26, r = 1, \ldots, 16 \)).

- **Indicator variable** \(Y_{i,3} \) for mortgage product: adjusted-rate \((Y_{i,3} = 1) \), fixed-rate mortgage \((Y_{i,3} = 2) \).

- **Levels** \(Y_{i,4} \) for the relative interest rate change over last quarter:

\[
Y_{i,4}(t_l) = \begin{cases}
1 & \text{if } x_{i,t_l} < 0, \\
2 & \text{if } x_{i,t_l} = 0, \\
k + 1 & \text{if } x_{i,t_l} \in (a_{k-1}, a_k], \ k = 2, 3, \\
5 & \text{if } x_{i,t} > 0.5,
\end{cases}
\]

where \(x_{i,t_l} = \frac{r_{i,t_l}}{r_{i,t_{l-1}}} - 1 \), \(a_1 = 0 \), \(a_2 = 0.25 \) and \(a_3 = 0.5 \).
Selected models

- We have $J = 260$ groups of obligors characterized by the predictor realizations (6500 observations of $O_{j,l}$ and $D_{j,l}$ for each rating class).
- 3265 non-zero observations of $O_{j,l}$ for rating A, and 2713 non-zero observations of $O_{j,l}$ for rating B.

The following models has been selected by our criterion:

- Rating A

\[
G(u_{j,l}(\hat{\theta}_A)) = \hat{\alpha}_A + \hat{f}_{1,A}^{(11)}(y_{j,1}^{(11)}(t_l)) + \\
+ (\hat{\beta}_{3,A} 1_{y_{j,3}(t_l)=1} + \hat{\gamma}_{3,A}) + \hat{f}_{4,A}(y_{j,4}(t_l)).
\]

- Rating B

\[
G(u_{j,l}(\hat{\theta}_B)) = \hat{\alpha}_B + \hat{f}_{0,B}^{(q)}(y_0(t_l)) + \hat{f}_{1,B}^{(8)}(y_{j,1}^{(8)}(t_l)) + \\
+ (\hat{\beta}_{3,B} 1_{y_{j,3}(t_l)=1} + \hat{\gamma}_{3,B}) + \hat{f}_{4,B}(y_{j,4}(t_l)).
\]
Parametric estimates

<table>
<thead>
<tr>
<th>Rating</th>
<th>Estimate</th>
<th>$\hat{\alpha}$</th>
<th>$\hat{\beta}_3$</th>
<th>$\hat{\gamma}_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>-9.9108</td>
<td>-1.3568</td>
<td>0.6740</td>
</tr>
<tr>
<td></td>
<td>Standard error</td>
<td>0.7752</td>
<td>0.4443</td>
<td>0.2207</td>
</tr>
<tr>
<td></td>
<td>Approx. 95% CI</td>
<td>-11.4612</td>
<td>-2.2454</td>
<td>0.2326</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8.3604</td>
<td>-0.4682</td>
<td>1.1154</td>
</tr>
</tbody>
</table>

B		-6.8644	-1.7893	0.8462
	Standard error	0.3636	0.1690	0.0799
	Approx. 95% CI	-6.1372	-2.1273	0.6864
		-7.5916	-1.4513	1.006

Parametric estimates for the two models (Rating A and Rating B), with standard errors and approximated 95% confidence intervals.
Non-parametric estimates: rating A

Spline estimation $\hat{f}_{1,A}^{(11)}$ with 1.2 degrees of freedom. Dotted lines give the approximated 95% confidence interval.

Spline estimation $\hat{f}_{4,A}$ with 2 degrees of freedom. Dotted lines give the approximated 95% confidence interval.
Non-parametric estimates: rating B

Spline estimation $\hat{f}_{0,B}^{(q)}$ with 2 degrees of freedom. Dotted lines give the approximated 95% confidence interval.

Spline estimation $\hat{f}_{1,B}^{(8)}$ with 1.1 degrees of freedom. Dotted lines give the approximated 95% confidence interval.
Non-parametric estimates: rating B (2)

Spline estimation $\hat{f}_{4,B}$ with 1.9 degrees of freedom. Dotted lines give the approximated 95% confidence interval.
1000 simulations of the total number of defaults during the first quarter 2001 in a portfolio \mathcal{P}' with 100,000 obligors. Obligors in \mathcal{P}' are distributed among the 26 regions, the 2 mortgage products and the 2 rating classes as in portfolio \mathcal{P} at the end of the last quarter 2000. Two scenario for the interest rate are considered: increase of 0.75% (left histogram), decrease of 0.5% (right histogram).
Conclusion

Advantages of the model:

- Dynamical model.
- Choice of the predictors very flexible. (The model suggests how data has to be collected.)
- Link the default process to the macro-economical environment.
- Dependence structure given by the common predictors.
- Applicable to available data.

Further research:

- Stochastic modeling of recoverables.
- Stochastic modeling of predictors.