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1 Introduction

The evaluation of a portfolio and its risk exposure with respect to market movements become
di�cult as soon as contingent claims are involved. In case only the performance of a portfolio
has to be determined, practitioners use the mark-to-market pricing each trading day and observe
the value changes of the underlying portfolio ex post. A price series becomes available which
reveals not only the performance but also the risk-return pattern of the various �nancial activities
untertaken by the portfolio manager. Practitioners prefer this approach due to its simplicity,
there is no need for information ex ante, neither for determining the value functions of the
�nancial instruments nor for assessing the probability distribution of the risk factors. However,
it is this lack of information, that makes it di�cult to rebalance the portfolio for achieving an
improved risk-return pattern in an e�cient way.

The risk-return pattern

Practitioners often identify the risk-return pattern of �nancial instruments through the average
return and the volatility of the return. In this work, we will characterize the risk-return pattern
of a portfolio with the so called pro�t-and-loss distribution, associated with a speci�ed planning
horizon. Clearly, the pro�t-and-loss distribution is determined by the value functions of the
instruments and the probability distribution of the risk factors. The latter represents the dy-
namics of the risk factors up to the end of the prespeci�ed holding period. Herein, the notions
risk-return pattern and pro�t-and-loss distribution are used synonymously.

Requesting an appealing approximation of the pro�t-and-loss distribution requires to determine
the dynamics of the risk factors and the value functions of the corresponding contingent claims
held in the portfolio.

The dynamics of risk factors are commonly modelled via normal or lognormal distributions.
However, it has been observed empirically that market movements are distributed non-normally,
respectively non-lognormally. For taking this into consideration one may think of employing
series of high frequency data of the risk factors, which help assess more general distributions for
the market movements.
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The value function of contingent claims are often given implicitly through partial di�erential
equations, which have to be solved. The most common approach still used for valuing derivatives
is based on the Black-Scholes model, which allows for solving the underlying partial di�erential
equation analytically. In recent years limited applicability of the Black-Scholes model has been
seen by both scientists and practitioners due to the fact that the volatility is supposed to be
deterministic and known beforehand; in addition, empirically observed characteristics of certain
risk factors, like the mean reverting property of interest rates, cannot be incorporated adequately.
In �nance, various extensions of the Black-Scholes approach and new valuation models have
been developed which take into account various dynamic features for pricing contingent claims
in a more realistic manner. Therefore these models build the basis for determining appealing
approximations for the value functions, and, �nally, for the desired risk-return pattern.

Practical viewpoints

The practice of risk management faces analytical and organizational problems which make the
pointwise evaluation of the pro�t-and-loss distribution onerous.

Analytical problems: The progress of �nancial engineering has created increasingly sophisticated
�nancial instruments, for which there is no analytically closed-form solution to their value func-
tions. Instead, these value functions are given implicitly, so that even pointwise evaluations of
the pro�t-and-loss distribution become di�cult.

Organization problems: Risk management units of large �nancial companies have to manage
a considerable quantity of data. The portfolios of such companies likely contain thousands of
�nancial instruments which depend on hundreds of risk factors. The delocalization of the trading
units of a worldwide institution causes the portfolio to be traded continuously, which results in
permanent shifts of the portfolio structure. This induces permanent changes of the underlying
risk factors and dynamic changes of the risk-return pattern.

Assessing the risk-return pattern of a portfolio provides the portfolio manager with information
on the frequency and amount of both, potential loss and potential pro�t. In case of linear or
quadratic value functions and normally distributed risk factors the quantiles of the pro�t and
loss distribution are available pointwise, i.e. with respect to prespeci�ed levels. The challenge
lies in the numerical evaluation of quantiles which becomes onerous in case the nonlinear value
function of a portfolio is given implicitly and the risk factors are distributed non-normally. In
practice, quantiles which represent a loss are also called value-at- risk. Herein, value-at-risk and
quantiles of a pro�t-and-loss distribution are used synonymously.

Coherent risk-measures

Any number which represents the potential loss of a portfolio in an adequate prede�ned sense
may be accepted as a risk measure. Coherent risk measures pay attention only to those market
movements that cause a loss to the portfolio manager. Those market movements which provide
pro�ts are not taken into account. Coherent risk measures are not based on market expecta-
tions of individual portfolio managers. Instead, a distinguished set of risk factor distributions
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characterizes the coherent risk measure and allow for identifying the potential loss. In this
sense coherent risk measures help regulators assess the capital requirement with respect to a
distinguished set of market dynamics for controlling the possibility of bankruptcy.

One common coherent risk measure is the maximum loss derived with respect to a prede�ned
feasible region of market movements. The distinguished set of probability measures, which char-
acterizes this measure consists of the one-point distributions at each point of a con�dence region
and its convexi�cation. The challenge for evaluating the maximum loss lies in the minimization
of a nonconvex, high-dimensional value function.

Contents of this paper

We focus on algorithmic procedures for determining the risk-return pattern of a portfolio. As
mentioned above, the risk-return pattern characterized by the pro�t-and-loss distribution is
completely determined by the value functions of the underlying instruments and by the risk
factor distribution. For the reason of adequate benchmarking, we focus on normal distributed
risk factors and on value functions which stem from the Black-Scholes model. It will become
clear below for which methodologies these assumptions may be relaxed in what way. This work
is seen as a contribution for helping develop and improve risk assessement tools for both trading
and management.

2 Problem statement

The pro�t-and-loss distribution (i.e. the risk-return pattern) is then given by the induced
probability measure of the portfolio value. It is stressed that value-at-risk reveals only the
frequency (i.e. probability) that portfolio value exceeds a certain limit. There is no information
available concerning to what extent the portfolio value does not come up to that limit.

The positions in the portfolio are supposed to remain �xed within a pregiven holding period. Due
to its characterization a coherent risk measure provides neither information on the frequency
(i.e. probability) of the potential loss nor on the frequency and amount of potential pro�ts.
Hence, no information can be deduced for the risk-return pattern and its asymmetry, which
provides the basis for improving the portfolio management. This is the motivation for focusing
on the pro�t-and-loss distribution. It is stressed that quantiles if accepted as risk measures
do not ful�ll the subadditivity condition and, hence, are not coherent. Evaluating quantiles
requires that a unique probability measure is used for modeling the market movements. This
unique probability measure may be represented by the martingale measure or by the individial
investor's expectations of future market movements.

For the ease of understanding the pro�t-and-loss distribution of a warrant, which has been
issued recently by a Swiss private bank, is evaluated. This ROE warrant on ABB is seen as an
alternative to money-market instruments. The warrant expires on June 24, 1998 and has been
priced with SFr. 1875.- on June 15, 1997. At this date the price of the ABB stock has been SFr.
2130.-. Depending on the ABB stock price at the expiration date two payments are possible:
i) in case the price is greater or equal the cap of SFr. 2100.- then the holder of one warrant
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Figure 2: Pro�t-and-loss distribution of the ROE warrant on ABB

proxies and their associated numerical e�ort is discussed. It will become clear from the arguments
below that each approach o�ers valuable information on the risk exposure. However, each has
to be utilized with care.

Delta approximation of the risk-pro�le

Linear approximations of the value functions at current price levels are denoted Delta approxi-

mations. These are widely used in classical risk management, and are known as duration analysis

in bond management or Delta hedging in portfolio management. Substituting the risk pro�le
by linear functions locally helps overcome the di�culty of implicitly given value functions and
provide analytical ways for determining the value-at-risk in case the risk factors are normally
distributed. Clearly, their goodness depends on the degree of nonlinearity of the risk pro�le.
It should be stressed that the goodness of the linear approximation decreases with increasing
holding period if options are included.

The value of a Delta-hedged portfolio remains unchanged for small changes in the risk factor,
the value-at-risk is close to 0. However, it might have severe impact on the portfolio value if
risk factor changes leave some neighbourhood of 0.

Applying the Delta approximation to the ROE warrant yields the value-at-risk numbers listed
in Table 2. These results illustrate that the accuracy is insu�cient and the severe asymmetric
shape of the true pro�t-and-loss distribution is not mapped adequately.
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� v+;� v
+;�
�

v�;� v
�;�
�

1% 378.123 289.425 180.683 315.600

3% 300.441 230.891 163.559 251.365

5% 261.284 199.966 151.669 212.613

Table 2: Delta approximation of VaR for the ROE warrant

Delta-Gamma approximation of the risk pro�le

To incorporate the nonlinearity of a risk pro�le second order information of the risk pro�le is
used. Substituting the risk pro�le locally by a quadratic function helps overcome the di�culty of
implicitly given value functions and provides additional information on the curvature of the risk
pro�le. Normally distributed risk factors allow for deriving the value-at-risk numbers analyti-
cally, which serve as proxies for the corresponding value-at-risk numbers of true risk pro�le. In
literature, this approach is known as the Delta-Gamma approximation. Obviously, the approxi-
mate portfolio value is no longer distributed normally. However, the corresponding distribution
function is representable as a combination of non-central �2�distributions, whose corresponding
quantiles are given in analytical form.

JP Morgan has analysed the goodness of its own Delta-Gamma approximation for the pricing
of call and put options. The widely used Black and Scholes formula serves as a benchmark.
The results show that the relative error is dependent on the relation of the spot and strike
price and on the time to maturity. The error increases when the option approaches expiration
at-the-money. An obvious explanation is o�ered by the nondi�erentiability of the risk pro�le at
the strike price when the option expires.

Applying the Delta-Gamma approximation to the ROE warrant yields the value-at-risk num-
bers listed in 3. These results illustrate su�cient accuracy and an adequate mapping of the
asymmetric pro�t-and-loss distribution.

� v+;� v
+;�
��� v�;� v

�;�
���

1% 378.123 369.296 180.683 195.977

3% 300.441 293.088 163.559 166.341

5% 261.284 253.719 151.669 150.037

Table 3: Delta-Gamma approximation of the VaR for the ROE warrant

Monte Carlo simulation

The risk factor movements are drawn randomly with a certain sample size. The underlying
portfolio is priced for each of the samples. This way, the Monte Carlo simulation yields an
empirical distribution and, hence, an approximation of the real pro�t-and-loss distribution. The
received quantiles are proxies.
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The applicability of the Monte-Carlo simulation is limited due to the fact that the mapping
of both the probability measure and the risk pro�le is adequate only for a large sample size.
Monte-Carlo simulation or modern versions, like the quasi-random Monte Carlo simulations is
therefore used in practice with care. It should be noted, that the goodness of random number
generators impacts the goodness of the value-at-risk numbers. Numerical tests with using various
random number generators have indicated that the variability of the quantiles of the empirical
distribution taken with respect to various generators is between 1�5%. Therefore the variability
of the value-at-risk numbers with respect to di�erent generators may be accepted as negligible,
at least at this stage.

Historical simulation

In the historical simulation the portfolio is evaluated with respect to risk factor movements
of the past. This yields an empirical distribution of the portfolio changes which serves as
approximation. Evaluating the skewness and kurtosis of the historical data illustrates whether
the normal distribution of the risk factors is valid. This allows conclusions on the goodness of
the Delta approximation and the Delta-Gamma approximation at least ex-post.

Again, the applicability of the historical simulation is limited by its size. The length of the
past period considered is a trade-o� between the sample size and the representativeness of the
data. It is capturing possible fat tails but also outliers of the distribution. One has to be aware
that the past observations map the future risk factor dynamics. Hence, the goodness of the so
derived value-at-risk numbers depends on how accurate the future risk factor movements obey
the past movements probabilistically.

In practice, the daily returns are often used as an empirical distribution although the underlying
portfolios are modi�ed in the daily business. In this case, the empirical distribution reveals
neither information on the riskiness or on the risk-return pattern of the current portfolios,
nor can this be utilized for improving the risk-return pattern and, hence, for improving the
performance of a portfolio manager. The daily returns do reveal information on the risk attitude
of the portfolio manager if its volatility is benchmarked to that of indices.

4 Sensitivity of the Value-at-Risk

The quantiles of the pro�t-and-loss distribution depend on the probability measure of a risk
factor space and on the risk pro�le of the underlying portfolio. The quantiles of the pro�t-and-
loss distribution represent the value-at-risk (VaR) with respect to a prede�ned level �. Whether
this value-at-risk number reects the real risk exposure of the portfolio in the prespeci�ed sense
depends on how good the probability measure maps the future risk factor movements up to
the end of the holding period, and on how good the risk pro�les maps the market value of the
portfolio. How to model the risk factor dynamics and the pricing mechanism is of interest for
scientists and practitioners. To clarify the contribution of this work, the issue is the evaluation of
the quantiles of the pro�t-and-loss distribuition given the probability measure of the risk factros
and the risk pro�le. Due to the complexity of the problem the quantiles are to be determined not
analytically but numerically with some level of inaccuracy. An e�cient algorithmic procedure
should behave reasonably fast and accurate. The sensitivity of the quantiles with respect to the
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parameters of market dynamics is one indicator for the model risk. Key parameters for modelling
the dynamics are the volatility and the correlation structure of the risk factors. Accurate
estimates of this parameters are of capital importance for the goodness of value-at-risk numbers.

Various test environments are speci�ed which help illustrate the sensitivity of value-at-risk with
respect to volatility and correlation in the subsequent section. These environments are char-
acterized by the probability measure of the risk factors and an underlying risk pro�le which
represents the payo� structure of any underlying portfolio.

The aim is to illustrate the sensitivity of the value-at-risk with respect to changes in the market
parameter and with respect to various levels. This is done for the above outlined environments
independent of the methodology. As mentioned above, the sensitivity of the quantiles with
respect to the key parameters, volatility and correlation structure, is one indicator for the model
risk one is exposed to with using the value-at-risk approach. This will motivate to pay attention
to the slope-curvature relation �

j�j along the risk factor components.

Sensitivity of the value-at-risk with respect to the level �: The value-at-risk corresponding to a
concave risk pro�le is more sensitive with respect to the level than the value-at-risk to a convex
risk pro�le. In case of a positive curvature the relative change is less severe. This has not been
expected from the delta, but could have been from the curvature-slope relation �

j�j . A delta-
hedged portfolio with negative curvature has a large negative curvature-slope relation which
indicates that the value-at-risk number is very sensitive with respect to changes in the level �.
The value-at-risk numbers of a portfolio with almost no curvature behave like 1; 64 : 1; 88 : 2; 33
when levels � = 1%; 3% and 5% are chosen. The value-at-risk numbers of a portfolio with
positive curvature behave even below the relation 1; 64 : 1; 88 : 2; 33.

Sensitivity of the value-at-risk with respect to market volatility �: In case the volatility increases
by 30%, the value-at-risk may change by about 70% for the concave risk pro�le, it likely changes
by about 20% for the convex risk pro�le. These sensitivity results behave in line with the
underlying curvature-slope relations.

One may state that the value-at-risk is less sensitive with respect to the volatility of the risk
factors when the risk pro�le is convex. This indicates less model risk when the risk exposure of
a portfolio is measured. To the contrary, negative curvature in the loss region of the risk pro�le
should be carefully analyzed. This documents that insu�cient estimates of the volatility can
have signi�cant impact on the identi�ed value-at-risk.

Further, 16� and 4�dimensional linear-quadratic risk pro�les have been considered with the in-
tention to examine the sensitivity of the value-at-risk with respect to the curvature of a quadratic
risk pro�le and the correlation structure of the risk factors. The risk factors are supposed to
be normally distributed. Evaluations have been performed for di�erent degrees of correlation
and for di�erent Hessian. In particular, we have considered the uncorrelated case, a medium
correlated case, and a highly correlated case. In addition, the impact of high and low curvature
relative to the slope is investigated.

The correlation structure of the risk factors plays a signi�cant role for the value-at-risk of
both curvature-slope relations in the multidimensional negative de�nite case. The greater the
correlation and the curvature, the higher the value-at-risk. Underestimating the market volatility
by 25% yields an underestimation of the value-at-risk by about 28% for a risk pro�le with a small
negative curvature-slope relation. Overestimating the volatility by 30% yields an overestimation
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G exchange rate

volatility p0 � 3�p p0 � 2�p p0 � �p p0 p0 + 1�p p0 + 2�p p0 + 3�p

v0 � 2�v g1;1 g1;2 g1;3 g1;4 g1;5 g1;6 g1;7

v0 � 1�v g2;1 g2;2 g2;3 g2;4 g2;5 g2;6 g2;7

v0 g3;1 g3;2 g3;3 g3;4 g3;5 g3;6 g3;7

v0 + 1�v g4;1 g4;2 g4;3 g4;4 g4;5 g4;6 g4;7

v0 + 2�v g5;1 g5;2 g5;3 g5;4 g5;5 g5;6 g5;7

Table 4: Lattice representation of risk pro�le

of the value-at-risk by about 37% for a risk pro�le with a small negative curvature-slope relation.
For risk pro�les with larger curvature the value-at-risk is more sensitive with respect to the
market volatility. It results an underestimation of the VaR by about 40% and an overestimation
of VaR by about 60% in the multidimensional case. The degree of correlation and the dimension
of the risk factor space have less impact on the sensitivity of the value-at-risk with respect to
market volatility. It is the curvature of the risk pro�le which counts for the sensitivity.

These results con�rm that negative curvature and estimating volatility play a signi�cant role
for the stability of value-at-risk estimates.

A Swiss bank has motivated the following lattice representation. Applied to a FX-portfolio with
K foreign currencies, this results in the evaluation of K risk matrices, where each risk matrix

(see Table 4) consists of the value change of the underlying portfolio with respect to one pair of
risk factors; in case of a FX portfolio the risk factors cross-rate and its volatility are used. Of
course, the lattice representation is also applicable to �xed-income or equity portfolios.

The entries gi;j of the matrix G represent the value change of the underlying portfolio with
respect to multiple changes in the price �k�p and in the volatility �k�v. 7 cross-rate movements
and 5 volatility movements are considered here. The current price and volatility is given by p0
and v0. It is noted that by construction g34 = 0 in the above example. Hence, the value of the
portfolio is known for �nitely many points. For determining the value change with respect to
di�erent factor movements one has to apply adequate inter- or extrapolation, which provides an
approximation of the real risk pro�le.

Observe that the nonseparability of risk pro�les with respect to the prices and with respect to
the volatilities is lost when the lattice representation is used in the above way. Only the nonsep-
arability of price and volatility of one underlying currency is taken into account. For measuring
that impact we have taken a FX-portfolio with 8 major currencies whose 16-dimensional risk
pro�le has been approximated by a linear-quadratic function.

A 16-dimensional risk pro�le of a FX-portfolio has been represented by �nitely many points
through 8 risk matrices with the components cross-rate and volatility for each of the 8 currencies.
These matrices have been used for investigating the impact of separability.

For determining the value change with respect to various factor movements we have applied
bilinear and quadratic interpolation, both of which provide an approximation of the real risk
pro�le. As mentioned, the nonseparability of risk pro�les with respect to the pairs of risk factors,
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i.e. with respect to cross-rates and volatilities, is lost. Only the nonseparability of price and
volatility of each underlying currency is taken into account.

The numerical results show that working with lattice representations may result in a severe over-
or underestimation of the value-at-risk. Surprisingly, the way the lattice points are interpolated
has less impact. Bilinear and quadratic interpolation yield similiar value-at-risk numbers.

Finally, a FX portfolio PF V
1 has been constructed which covers 8 exchange rates and which

consists of 200 di�erent call and put options. The portfolio PF V
1 contains 40% of instruments

with maturity 7 days, 40% with maturity 3 months, 10% with maturity 6 months and 10% with
maturity one year. 40% of the derivatives are at-the-money, 20% are each mid in-the-money or
out-of-the-money and 10% are each deep in- or out-of-the-money.

Subsets of the above portfolio are de�ned according to the following rules: Portfolio PF V
2

contains in-the-money instruments; portfolio PF V
3 out-of-the-money instruments; portfolio PF V

4

in-the-money calls and out-of-the-money puts; portfolio PF V
5 contains in-the-money puts and

out-of-the-money calls. The maturity structures of all these subportfolios are the same.

The Black-Scholes approach is used for valuing the portfolio yielding the corresponding �ve risk
pro�les. The numerical results demonstrate that the sensitivity of the value-at-risk numbers
does not depend on the weights of out-of-the-money, in-the-money and at-the-money options
within the portfolio.

5 The Barycentric Approximation

The complexity of interaction between time and uncertainty makes practical decision and plan-
ning problems to utmost di�cult applications of probability and optimization theory. The
Barycentric Approximation represents a methodology which has been developed for analysing
interaction e�ects between decision making and uncertainty within stochastic programming (a
�eld of activity within mathematical programming).

Contrary to stochastic control problems, stochastic programs are solved once per period, taking
into account periodically updated forecasts of the involved stochastic processes with respect to
the future periods. It is today's optimal policy, which is of importance, adopted with respect
to the current stochastic dynamics of prices, returns, cash-ows, and also with respect to the
optimal policies in future periods, which in turn are adopted with respect to new information
on stochastic dynamics. It is this dynamic planning mechanism that characterizes stochastic
programming and has received increasing attention in �nance in the U.S. and in Great Britain.

The above mentioned dynamic planning mechanism is solved when integration and optimization
of value functions has been performed with a prescribed level of accuracy. Barycentric approx-
imation helps overcome the di�culties in the multidimensional integration and optimization of
recursively given value functions by sophisticated discretization of the discrete-time stochas-
tic processes. In theory, the convergence of the approximate solutions and the corresponding
values are enforced by the weak convergence of the discrete measures. In practice, its applica-
tion within stochastic programming has provided promising results when the decision space is
high-dimensional and the probability space is low-dimensional. This has motivated the applica-
tion of the barycentric approximation methodology for evaluating pro�t-and-loss distributions
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numerically. Former research achtivities by the authors have focused on exploiting structural
properties of the value functions. Although, convergence of the quantiles is ensured by the
weak convergence of the discrete probability measures, numerical results have indicated that the
approximation of the quantiles of the associated pro�t-and-loss distribution are less practical
when the portfolio ascertains a reasonable complexity. Even when the level � is kept �xed, the
corresponding quantile is approximated with insu�cient accuracy. This reveals that weak con-

vergence appears to be not strong enough for evaluating quantiles numerically in a satisfactory
way.

The above mentioned experience has motivated the authors to focus on information o�ered by
the barycentric approximation but still unused in the �rst project phase. It has been realized
that the component which represents the dual to the derived discrete probability measure helps
evaluate the quantiles in a better way. It is the piecewise linearization of the risk pro�le over a
simplicial partition of the risk factor space, which provides an appealing approximation of the
pro�t-and-loss distribution. The generalized barycenters of the subsimplices may be viewed as
distinguished market scenarios subject to which the portfolio has to be evaluated. It is stressed
that the methodology poses no assumption on the risk factor distribution and is applicable for
general multivariate or empirical distributions in case the variance-covariance matrix exists.

It is observed that the value-at-risk numbers and the accuracy of the barycentric approximation
increases with the degree of correlation at a �xed level �. It is known from the above that the
sensitivity of the VaR with respect to the market volatility increases with decreasing curvature-
slope relation. Having in mind the characteristic features of the barycentric approximation it is
not surprising that the accuracy of the barycentric approximation decreases with the curvature-
slope relation. Also, the accuracy of the barycentric approximation is insensitive with respect
to the level � for �xed variance-covariance matrix.

As learned from the low-dimensional case already, both risk factor space and risk pro�le have
to be taken into account to ful�ll the needs for applicability in the high-dimensional case. The
accuracy of the barycentric approximation correlates with the sensitivity of the VaR due to its
characteristic features and has proven to be competitive with the Delta-Gamma approximation.

The barycentric approximation has been applied to a ROE warrant on the ABB stock and has
been benchmarked by the Delta-Gamma approximation for various risk pro�les. The numerical
results have illustrated the risk-return pattern of the ROE warrant and the various risk pro�les.
The asymmetry of the risk-return pattern reveals the risk attitude of the investors which proclaim
those risk pro�les.

The value-at-risk associated with ROE warrant on the ABB stock is listed with respect to various
stock prices in Tables 5 and 6. v

+;�
B:A: and v

�;�
B:A: are obtained by applying the barycentric ap-

proximations for J = 100 re�nements, v+;�
��� and v�;�

��� correspond to the Delta-Gamma approx-
imation. The accuracy of the Delta-Gamma approximation is within the range [�4:52%; 8:47%]
for levels � = 1%; 3%; 5%, that of the barycentric approximation is within [�2:95%; 3:60%] (see
Table 7). It becomes clear how the asymmetry of the pro�t-and-loss distribution changes with
respect to di�erent prices of the underlying ABB stock.
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� = 1% long short

Underlying v
+;�
B:A: v+;� Error v

�;�
B:A: v�;� Error

1800 402.275 407.056 -1.17% 295.152 291.349 1.31%

1900 397.223 403.917 -1.66% 262.858 257.826 1.95%

2000 388.211 396.749 -2.15% 229.661 223.997 2.53%

2100 374.691 382.426 -2.02% 196.281 190.697 2.93%

2130 370.074 378.123 -2.13% 185.945 180.683 2.91%

2200 360.637 371.608 -2.95% 163.709 158.717 3.15%

� = 3%

1800 329.088 330.313 -0.37% 255.870 248.882 2.81%

1900 324.292 325.225 -0.29% 231.170 224.033 3.19%

2000 316.261 318.154 -0.59% 205.086 197.950 3.60%

2100 303.502 304.709 -0.40% 176.377 171.595 2.79%

2130 298.672 300.441 -0.59% 168.904 163.559 3.27%

2200 285.573 290.241 -1.61% 149.869 145.687 2.87%

� = 5%

1800 293.890 293.811 -0.03% 226.890 221.746 2.32%

1900 287.328 288.333 -0.35% 207.383 201.917 2.71%

2000 277.895 279.054 -0.42% 184.834 179.951 2.71%

2100 264.019 265.605 -0.60% 161.336 158.470 1.81%

2130 259.508 261.284 -0.68% 154.558 151.669 1.90%

2200 249.626 250.410 -0.31% 138.152 136.166 1.46%

Table 5: Barycentric approximation for the ROE warrant
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� = 1% long short

Underlying v
+;�
��� v+;� Error v

�;�
��� v�;� Error

1800 418.560 407.056 2.83% 302.531 291.349 3.84%
1900 409.234 403.917 1.32% 272.693 257.826 5.77%
2000 389.240 396.749 -1.89% 239.327 223.997 6.84%
2100 377.615 382.426 -1.26% 205.527 190.697 7.78%
2130 369.296 378.123 -2.33% 195.977 180.683 8.46%
2200 354.800 371.608 -4.52% 172.167 158.717 8.47%

� = 3%

1800 334.473 330.313 1.26% 247.144 248.882 -0.70%
1900 325.085 325.225 -0.04% 224.860 224.033 0.37%
2000 312.928 318.154 -1.64% 199.744 197.950 0.91%
2100 296.848 304.709 -2.58% 174.399 171.595 1.63%
2130 293.088 300.441 -2.45% 166.341 163.559 1.70%
2200 283.806 290.241 -2.22% 149.365 145.687 2.52%

� = 5%

1800 295.990 293.811 0.74% 217.352 221.746 -1.98%
1900 285.413 288.333 -1.01% 198.393 201.917 -1.75%
2000 271.974 279.054 -2.54% 177.008 179.951 -1.64%
2100 258.168 265.605 -2.80% 156.616 158.470 -1.17%
2130 253.719 261.284 -2.90% 150.037 151.669 -1.08%
2200 241.574 250.410 -3.53% 134.090 136.166 -1.52%

Table 6: Delta-Gamma approximation for the ROE warrant

Error � = 1% � = 3% � = 5%

Underlying v
+;�
B:A: v

+;�
��� v

+;�
B:A: v

+;�
��� v

+;�
B:A: v

+;�
���

1800 -1.17% 2.83% -0.37% 1.26% -0.03% 0.74%
1900 -1.66% 1.32% -0.29% -0.04% -0.35% -1.01%
2000 -2.15% -1.89% -0.59% -1.64% -0.42% -2.54%
2100 -2.02% -1.26% -0.40% -2.58% -0.60% -2.80%
2130 -2.13% -2.33% -0.59% -2.45% -0.68% -2.90%
2200 -2.95% -4.52% -1.61% -2.22% -0.31% -3.53%

Underlying v
�;�
B:A: v

�;�
��� v

�;�
B:A: v

�;�
��� v

�;�
B:A: v

�;�
���

1800 1.31% 3.84% 2.81% -0.70% 2.32% -1.98%
1900 1.95% 5.77% 3.19% 0.37% 2.71% -1.75%
2000 2.53% 6.84% 3.60% 0.91% 2.71% -1.64%
2100 2.93% 7.78% 2.79% 1.63% 1.81% -1.17%
2130 2.91% 8.46% 3.27% 1.70% 1.90% -1.08%
2200 3.15% 8.47% 2.87% 2.52% 1.46% -1.52%

Table 7: Error of the barycentric and Delta-Gamma approximations for the ROE warrant
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6 Conclusions and Outlook

We have started with assessing the sensitivity of the value-at-risk with respect to market volatil-
ity. The curvature-slope relation of a risk pro�le evaluated at the current market situation
reveals information on that sensitivity, and, hence, on the model risk, one is exposed to when
the parameter volatility is over- or underestimated.

Based on the experience that weak convergence of the probability measures is not strong enough
to receive adequate approximates of the value-at-risk with a reasonable numerical e�ort, we have
focused on the dual view of the barycentric approximation. It is the piecewise linearization of
the risk pro�le over a simplicial partition of the risk factor space, which provides an appealing
approximation of the pro�t-and-loss distribution. The generalized barycenters of the subsim-
plices may be viewed as distinguished market scenarios subject to which the portfolio has to
be evaluated. The approach is also applicable to nonnormally distributed risk factors for which
the variance-covariance matrix exists. As learned from the low-dimsional case already, both risk
factor space and risk pro�le have to be taken into account to ful�ll the needs for applicability in
the high-dimensional case. The accuracy of the barycentric approximation correlates with the
sensitivity of the VaR due to its characteristic features and has proven to be competitive with
the Delta-Gamma approximation.

On the whole, it is recognized that the barycentric approximation is competitive with the Delta-
Gamma approximation. The accuracy of both approximations is insensitive with respect to
the level �. The asymmetry of the pro�t-and-loss distribution is realized from the value-at-risk
proxies at various levels. Having in mind that the barycentric approximation is applicable for
general multivariate distributions, for which the variance covariance matrix exists, makes this
methodology a promising tool for developing and improving risk assessment systems for both
trading and management.

This work is seen as one step towards controling and managing market risk with the value-at-risk
approach. The key for being e�cient lies in an adequate mapping of the risk-return pattern that
corresponds to the underlying portfolio. Based on the current developments and the achieved
experiences the focus of future research activities is therefore posed on various issues. The
way the re�nement process of the simplicial partition is designed is still judged as rather crude
by the authors. The information on the variability of the slope and the curvature, which is
available locally at the barycenters and the vertices of the subsimplices, reveals the goodness of
the piecewise linearization. This information is still unused although it appears to be of major
importance to the authors, not only for assessing the model risk but also for improving the
convergence behaviour of the approximate risk-return pattern.

As mentioned, the barycenters represent market scenarios subject to which the portfolio has
to be analyzed. These portfolio values and their sensitivities provide the basis for evaluating
and implementing optimized hedging activities. This requires that the value-at-risk approach
becomes embedded into a stochastic optimization problem. The challenge of these future activ-
ities lies in determining the dynamic of its risk-return pattern and how this can be incorporated
in an active portfolio management.
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