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Approximation of P&L Distributions
(A Numerical Approach for Evaluating VaR

based on Extremal Measures)

K. Frauendorfer, E. K�onigsperger

Abstract: Value functions (risk pro�les) of �nancial instruments and the real
distributions of risk factors are not available in analytically closed forms. These
components have to be approximated. In this work, a new approach for risk
measurement is introduced. The underlying methodology is based on the utili-
zation of extremal measures for approximating the P&L distribution. A special
class of extremal measures is employed which exploits the monotonicity of price
sensitivities entailed by convexity. Clearly, in case the value functions have mo-
notonous derivatives, the payo�-functions are convex or concave depending on
whether a position is held short or long. The incorporated extremal measures
provide approximations for both risk factor distribution and risk pro�les, and
allow for deriving an adequate approximation of the P&L distributions, in parti-
cual for appealing VaR-estimates. The basics of this approach are presented and
�rst numerical results are tested against the currently apllied VaR-approaches
and the simulation benchmarks established earlier in Allen [1].

1. Introduction

Market risks are managed at several organizational levels of a bank. Funda-
mental risk policies are formulated by top management reecting a bank's \risk
appetite" or the maximum amount of money that can be tolerated to be lost in
a certain time horizon given current business operations and opportunities and
actual risk exposure. Top management is supported by personnel (in controlling
and support sections) that translate risk policies into operational strategies and
standards, do research in risk measurement methodology, collect risk data, sup-
port and control trading units, and report risk information. The most important
means of risk control is setting limits (e.g., on nominal positions, delta, gamma,
theta sensitivities with respect to risk factors, risk classes, and time buckets) for
portfolios (books). The way these books are partitioned largely determines the
organizational structure of trading and risk control functions within a bank. A
fundamental distinction among interest rates, currencies, equities, and commo-
dities is common.
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After consolidating and mapping the open positions, VaR concepts are applied,
strongly based on the assumption that the primary risk factors are normally
distributed and risk pro�les are linear. In case of highly non-linear risk pro�les,
for which separability is lost, and in case primary risk factors are distributed non-
normally, the VaR-concepts currently used in practice yield misleading results
(see Allen et al. [2]). Up to now, viable alternative approaches do not seem to
be available.

For risk reporting to higher organizational levels, VaR-values and sensitivities are
commonly presented in one or more of the following ways:

� VaR (which is called DEaR [daily earnings at risk] when calculated on a
daily basis) for a given con�dence level is plotted over a certain time horizon
and compared to empirical (historical) P&L data (with or without trading
activity). This way, the validity of the VaR model can be assessed over
time (J.P. Morgan & Co [10]).

� Sensitivities are listed and summed up for a given risk factor across portfo-
lios or for a given portfolio across di�erent risk factors, taking into account
the variance-covariance matrix.

� Risk pro�les are shown for di�erent volatilities and di�erent degrees of
aggregation with respect to primary risk factor prices.

Several other techniques for assessing capital at risk, like historical and Monte
Carlo simulation, stress testing (maximum loss optimization, factor push me-
thod), and neural network hybrid systems are considered in the Swiss banking
industry. The following issues were raised in discussions with risk managers and
controllers:

� Within the VaR-concept, which of the assumptions on risk factor and P&L
distributions are valid and to what degree? How critical is invalidity? Does
VaR overestimate risk? Are assumptions on risk pro�les, like separability
and additivity, justi�ed? What are the adverse consequences, if they are
not? How can risk aggregation techniques be improved?

� Are there viable risk concepts other than VaR? How do measurement accu-
racies and potential scopes of application compare among the di�erent risk
concepts? Do combinations and restrictions of application of risk concepts
make sense?

� Easily and intuitively understandable, comprehensive and real-time risk
assessment tools need to be developed and improved for both trading and
top-management.

2



An open question to academians has been why the well-known downside risk
approaches (e.g., shortfall risk, lower partial moments) seemed to be ignored in
the context of risk controlling. All these issues and open questions are potential
research areas for RiskLab beyond what has been accomplished in the �rst phase
of the project.

In the �rst phase of RiskLab, the main purpose was to investigate the measure-
ment of market risk in practice. Practitioners measure market risk using various
approximation techniques and making assumptions on both statistical properties
of market moves and the sensitivity of prices (changes in pro�t and loss) towards
given market moves. Under the guidance of M. Allen (SBC), risk pro�les for
a large FX-portfolio were selected and presented in normalized polynomial form
(see Allen et al. [2]). The pro�t and loss (P&L) distributions of those risk pro�les
and associated delta-, delta-gamma-, and piecewise-linear approximations were
derived through Monte-Carlo simulation based on normally distributed, multi-
dimensional (correlated and uncorrelated) risk factors. Furthermore, P&L dis-
tributions for linear, piecewise-linear, and quadratic risk pro�les are constructed
via analytical methods.

The intention of [2] was to establish benchmarks for evaluating the goodness of
those approaches and allowing for the assessment of distribution tails. This has
been achieved by analyzing the risk behavior of �nancial instruments assuming
complete knowledge of the functional relations (including their derivatives) bet-
ween risk factor moves and prices. Currently in practice, these relations may not
be obtainable, because of the fact that approximations are based on price infor-
mation calculated for only few discrete market moves. In this sense, [2] may be
seen as an initial step towards investigating the relation between e�ort required
to collect market data and compute prices and the level of attained precision in
risk assessment.

In [2], the results show that the presented approximations do not allow for the de-
rivation of signi�cant P&L distributions. Those are not capable of capturing true
risk properties. Their associated risk measures deviated from the benchmarks by
large amounts. The preliminary study [2] indicates that an acceptable level of
precision in risk assessment cannot be reached by local information (e.g., 1st/2nd
order derivatives) on the price change. The proposition that deviations from
benchmark values cancel out when a portfolio is subject to higher-dimensional
risk could not be validated.

Comparing errors incurred by risk pro�le approximation to simulation errors
(subject to sample size), the study [2] shows that the latter are neglectible com-
pared to the former. In a separate work, the impact of various random number
generators to the risk measures was investigated. Such an analysis was motivated
by Mr. Schlegel (UBS) in an early RiskLab meeting. The results illustrate that i)
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the inaccuracy of VaR is increasing with decreasing �, ii) the inaccuracy of VaR
is of order 5% to 10% for sample sizes less than 500000, and iii) higher moments,
like skewness and kurtosis, are estimated with insu�cient accuracy. For details
see Frauendorfer [6].

These experiences strongly motivate that current research activities should be
focused on deriving better risk pro�le approximations rather than increasing si-
mulation e�orts. The attained results emphasize that more (not just local) infor-
mation on P&L values and derivatives needs to be utilized in order to get better
approximations. This has been the motivation for employing a special class of
extremal probability measures, which have proven extremely useful in stochastic
optimization.

In this work, it is discussed how extremal probability measures resulting from
barycentric approximation help exploit monotonous (�rst-order) price sensitives
for approximating the P&L distribution of a portfolio. Section 2 states the under-
lying problem formally. In section 3, monotonicity of �rst-order price sensitivities
is discussed for standard pricing models. Extremal measures are introduced in
section 4 and applied for approximating P&L distributions (section 5). First nu-
merical results are outlined in section 6. This work ends with a summary of the
achieved results, with conclusions and an outlook to the research activities lying
ahead (section 7).

2. Problem Statement

Let ! = (!1; � � � ; !M) 2 IRM represent stochastic changes of primary risk factors.
The current value of the risk factors is supposed to be 0. Stochasticity of risk
factors is modelled through Pt on (IRM ;B), which represents the induced (M-
dimensional) probability measure for the random change ! in the risk factors at
the end of the holding period t. Typical reporting periods are one-day or two-
week periods. In reality, Pt is unknown and may vary with the length of the
reporting period. In this work, no additional assumptions are posed on Pt. In
practice, however, it is often assumed that Pt is a multivariate normal distribution
with mean 0 and a variance-covariance matrix changing with the length of the
reporting period. Thus

Pt := N(0;�t) with �t := t � �; (1)

and the existence of all moments are ensured. It should be stressed that there
is empirical evidence that random changes of risk factors show greater density in
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their tails than a normal distribution (see J.P.Morgan & Co. 1995 [10]), probably
without the existence of second and higher order moments.

Let gi(!; t) : IR
M � [0; T ]! IR denote price functions (value functions, risk pro�-

les) of a �nancial instruments i = 1; � � � ; I at the end of the reporting period (time
t), with risk factors changing by !. These functions can be determined through
pricing models, however they cannot be speci�ed analytically. At best, function
values, �rst and second order derivatives (or di�erences) of these functions can be
computed for small, one-dimensional collections of preselected points (risk factor
levels). Within the reporting period, the change of the corresponding portfolio
value is given by

v(!; t) =
IX

i=1

gi(!; t): (2)

Clearly, the value change v(�; t) of the portfolio is stochastic and represents a loss,
if negative, and a pro�t, if positive. The following information is of importance
for risk managers and controllers:

1. What is the pro�t & loss (P&L) distribution of v(�; t) ?
2. What are the various capital at risk values subject to some prede�ned

con�dence level � ?

3. In case of existence, what are the �rst four moments, skewnesses, kurtoses
of v(�; t) over the reporting period [0; t] ?

The pro�t and loss distribution Ft is given through

Ft(v̂) = Pt(v(!; t) � v̂): (3)

In case of existence, the �rst moment of v(�; t) is denoted

�v(t) =
Z
v(!; t)dPt(!); (4)

and the moments of higher order(r � 2) with respect to the mean �v(t) are denoted

�vr(t) :=
Z

[v(!; t)� �v(t)]rdPt(!): (5)

Clearly, the second moment (r = 2) is the variance of v(�; t). From the moments
�v2(t); �v3(t); �v4(t), the skewness s(t) and kurtosis k(t) of the P&L distribution are
given by:
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s(t) :=
�v3(t)q
�v2(t)3

; k(t) :=
�v4(t)

�v2(t)2
: (6)

Even if the risk factors are normally distributed, the pro�t and loss distribution
of an underlying portfolio has to be approximated with sophisticated techniques.
The skewness of the normal distribution is 0, and its kurtosis 3. So, in case
skewness and/or kurtosis of the P&L distribution di�er from 0 and 3 signi�cantly,
it's not adequate to approximate the P&L distribution by a Normal distribution.

In the literature (see e.g. Allen [1], Wilson [13], Beckstr�om and Campbell [3]),
a technique which estimates potential changes in portfolio values based on sta-
tistical con�dence intervals of risk factor changes is called VaR. VaR-estimates
measure the current portfolio's risk under the assumption that the composition
of a given portfolio remains �xed over the holding period [0; t]. In other words,
VaR-estimates may be interpreted as the amount of capital currently at risk.
Two major types of VaR-estimates v�(t) exist:

The VaR-estimate of the �rst type vI�(t) is de�ned as

Ft(v
I
�(t)) = �: (7)

Practically, if vI�(t) � 0 for � = 0:05, one may state that in 5 out of 100 holding
periods [0; t] the portfolio decreases by more than jvI�(t)j. Analogously, if vI�(t) >
0 for � = 0:9, one may state that in 10 out of 100 reporting periods [0; t], the
portfolio increases by more than vI�(t). It is stressed that vI�(t) always exist, even
if the moments of ! do not.

The VaR-estimate of the second type vII� (t) is de�ned according to

vII� (t) := minfv(!; t)j! 2 
̂; Pt(
̂) � �g; (8)

it represents the maximum loss with respect to a compact con�dence region 
̂ of
level �. Clearly, the associated risk factor events !II

� (t), de�ned by

!II
� (t) 2 argminfv(!; t)j! 2 
̂; Pt(
̂) � �g; (9)

exist if continuity of the value function and compactness of the con�dence region
hold. These events represent worst case scenarios (see Wilson [13]).

VaR-estimates of the �rst type commonly refer to the distribution tails of losses
(given small �) and are investigated in this work. Likewise, VaR-estimates of the
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second type are restricted to worst case scenarios subject to con�dence regions
with a preselected con�dence level �, being investigated in Studer [12].

It is common for risk managers that the risk factor distribution is modelled as
a multivariate normal distribution with mean 0 and an estimate of the associa-
ted variance-covariance matrix �t. Furthermore in practice, the price functions
of the �nancial instruments are evaluated at one-dimensional collections of few
prede�ned risk factor values, separately in their components !m. This yields the
associated portfolio price change vm(!m; t) with respect to the risk components
!m; m = 1; � � � ;M . From the viewpoint of risk controllers it becomes a necessity
to rely on the relation

v(!; t) �
MX
m=1

vm(!m; t): (10)

Relying on these simpli�cations, one can even expect to get closed form expres-
sions for the VaR-estimates of the �rst type. For example, let risk factors be
normally distributed and let the price functions vm(!m; t) be replaced by their
�rst-order approximations �m � !m for m = 1; � � � ;M . As the associated P&L
distribution of the entire portfolio value is a normal distribution with mean 0 and
standard deviation

�v :=
p
�0 � � ��;

the VaR-estimate of �rst type is given analytically according to

vI�(t) := a(�) � �v �
p
t; (11)

where, for example, a(0:975) = 2 or a(0:998) = 3. Clearly, the goodness of this
VaR-value depends on the linearity assumption of the risk pro�le (hence, on the
validity of 10) and on the assumption of normally distributed risk factors. It
should be stressed that the linearity assumption of the risk pro�les may be ac-
cepted only for very short holding periods [0; t], where the assumption of normally
distributed risk factors may be accepted for holding periods of su�cient length.
According to the study in [2], closed form expression (11) is NOT applicable.

As mentioned above, price functions (risk pro�les) of the �nancial instruments
and the real distributions of risk factors are not available in analytically closed
forms. These components have to be approximated. In this work, a special
class of extremal measures is employed for approximating not only the risk factor
distribution but also the risk pro�les, yielding an adequate approximation of P&L
distributions.
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3. Monotone Price Sensitivities

(The Saddle Structure)

First, additional motivation is laid for investigating the derivatives of various
value functions.

Formally, a function f whose values are real or += �1 and whose domain is a
subset S of IRM is convex precisely if the set f(!; �)j! 2 S; � 2 IR; � � f(!)g
is a convex subset of IRM+1. Considering the simple case of one-dimensional,
di�erentiable functions, it is known that in case these functions have increasing
�rst order derivatives, they are convex; functions with decreasing �rst order de-
rivatives are concave. Closed proper convex multi-dimensional functions may be
characterized (up to an additive constant) by their subdi�erentials (i.e., sets of
subgradients). In case the subdi�erentials are singletons, the subgradient coin-
cides with the gradient, which in turn implies continuous di�erentiability of the
convex function. The subdi�erentials of convex functions completely describe
the directional derivatives and may be characterized in terms of a monotonicity
property (for details, see Rockafellar [11]). As functions are concave precisely if
their negative is convex, and as bivariate functions are saddle functions precisely
if these are convex in the one argument and concave in the other, it is possible
to extend the above argumentation to the saddle case. It is this monotonicity
property of subdi�erential mappings of saddle functions which can be exploited
by a speci�c class of extremal probability measures in case the arguments are
stochastic (see [4],[5]).

These �ndings may be applied to our framework: In case of convex or concave
value functions, the directional derivatives represent the price sensitivities along
one-dimensional market moves. Monotonicity of the subdi�erential mappings im-
plies monotonicity of the directional derivatives and, hence, monotonicity of the
price sensitivities. Extremal measures associated with the barycentric approxima-
tion of these value functions exploit this monotonicity and provide investors with
a kind of best discretizations of the underlying stochastic risk factors, in a sense
that will become more clear later.

In this section, particular attention is paid to the monotonicity of �rst order
derivatives of standard value functions corresponding to bonds, interst rate swaps,
and options priced with the Black-Scholes formula. It is useful to consider the
value functions g(!; t) dependent on time t. This helps illustrate the value change
with respect to time t.

The value function of a default-free zero coupon bond is given by
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gB(!1; t) =
F

(1 + !1)�
; (12)

where F is the face value of bond (payment at maturity), !1 is the annual interest
rate associated with time to maturity � = T � t, stated in number of years.
Considering the e�ect of time on the price of a bond, it is common to set � = T�t.
Clearly, for �xed t, gB has monotonously increasing �rst order derivatives in !1
and is herewith convex in !1.

The value of default-free bonds with �xed coupon payments C at Tm (m = 1; :::;M)
is the sum of the payments discounted with respect to the rates !m corresponding
to maturities �m = Tm � t (m = 1; :::;M). Setting ! = (!1; � � � ; !M), the value is
given by

gB(!; t) =
MX
m=1

C

(1 + !m)�m
+

F

(1 + !M)�M
: (13)

Clearly in this case, the value function gB(�; t) is a M-dimensional convex function
in the term structure ! = (!1; � � � ; !M). It is noted that the value functions are
linear in the coupon payments for �xed term structure; hence, in case the pay-
ments at Tm are uncertain (i.e., default is possible), price sensitivity is constant
and given by 1

(1+!m)�m
.

The value of an interest rate swap is the di�erence of the values of two bonds, one
with �xed payments and one with oating payments. Let F denote the notional
pincipal in the swap agreement. The value of a oating rate bond is equal to
notional principal, F , immediately after a payment date. In our notation, the
time until next payment date is T1, so that

gBfl(!; t) :=
Cfl

(1 + !1)�1
+

F

(1 + !1)�1
; (14)

where Cfl is the known oating rate payment at time T1. If a �nancial institution
is paying oating rates and receiving �xed rates, then the value of the swap is

gS(!; t) := gB(!; t)� gBfl(!; t): (15)

The value of the swap is 0 if �rst negotiated and 0 at the end of its life. During
its life it may have a positive or negative value. It is observed that gS(�; t) is
convex in (!�2; � � � ; !�M ) and concave in !�1 as F + Cfl � C � 0. Clearly, the
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above argumentation holds also for discounting with continuously compounded
rates.

The value of a forward contract on a security !1 with known dividend yield q
(paid continuously) is given by

gf(!1; !2; t) := !1e
�q� �Ke�!2� ; (16)

where !2 denotes the continuously compounded rate corresponding to � = T � t
and K the forward price of the security. Clearly, gf(�; t) is linear a�ne (i.e.,
convex and concave) in !1 and concave in !2.

European call options on non-dividend paying securities which follow a geometric
Brownian motion are valued according to the Black-Scholes model. The risk
factors are given by ! := (!1; !2; !3), where !1 represents the value of the security
at t, !2 is the interest rate for an investment with maturity � := T�t, and !3 is the
volatility of the security price observed at t. Let X denote the exercise price and
N (�) the cumulative probability distribution function for a standardized normally
distributed variable. Then, the value of the European call option is given by

gc(!; t) = !1N (d1)�Xe�!2�N (d2); (17)

where

d1 =
ln(!1

X
) + (!2 +

1
2
!2
3)�

!3
p
�

d2 = d1 � !3
p
� :

It is known that the price sensitivities with respect to !1; !2, and !3 are positive.
Moreover, due to the fact that the risk-neutral stochastic process for the security
is lognormal, it is proven that gc(�; t) is convex in !1. Whether convexity also
holds for the price sensitivities with respect to !2 and !3 remains to be assessed.
Similar results can easily be derived for European put options by employing the
call-put parity.

It is noted that the value function gc is convex in the strike price X, too, but
as the strike price is determined by the investors and not by the market, this
property is of less priority for risk measurement. This may have some inuence
on the design of adequate aggregation techniques. For further details, the reader
is referred to Ingersoll [8].

Although some assumptions in the Black-Scholes model are not realistic this
approach is viewed fundamental in option pricing theory and broadly applied for
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European stock option. The less realistic assumptions are deterministic volatility
and interest rate. Further, it has to be taken into account that most stock
options are American. In literature, Black-Scholes is even applied to American
stock option and options on interest rate, interest rate futures and caps. It has
to be stressed that the assumptions within Black-Schole are not adequate for
interest rate sensitive derivatives (see Hull [7]). Nevertheless, for our purposes,
this model can be used as basic tool for investigating the structural properties of
the corresponding value functions.

From the above, it becomes obvious that in case the value functions have mono-
tonous derivatives, convexity and concavity depend on whether a position is held
short or long. A comprehensive analysis of value functions with respect to the
underlying risk factors remains to be carried out. A better understanding will
certainly help aggregate the various instruments adequately and measure risk
more reliably.

4. A Class of Extremal Probability Measures

In this section, t is kept �xed and suppressed for the ease of exposition. Therefore,
the value function is written as v(!) : IRM ! IR. Let ! be partitioned according
to ! = (�; �) with � 2 IRK; � 2 IRL and 
̂ be represented as a Cartesian product
of simplices � 2 IRK and � 2 IRL, i.e., 
̂ := � � �. Given a probability space
(
̂; B̂; P̂ ), we are interested in approximating the distribution function

F̂ (v̂) = P̂ (v(!) � v̂): (18)

This will be achieved by deriving two sequences of discrete probability distri-
butions fQJ

1g; fQJ
2g; J = 1; 2; � � �, which converge weakly to P̂ and allow for

quantifying the goodness of the approximation with respect to each J . The fol-
lowing results have been derived in Frauendorfer ([4],[5]) for solving stochastic
programs and form the basis for approximating the P&L distribution in the next
section.

Let � denote the set of those probability measures Q on (
̂; B̂) which coincide in
the �rst and joint moments with those of P̂ ; i.e., � consists of those probability
measures Q for which
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Z

̂
�dQ =

Z

̂
�dP̂ ;Z


̂
�dQ =

Z

̂
�dP̂ ;Z


̂
�k�ldQ =

Z

̂
�k�ldP̂ ; 8k; l

(19)

holds. Suppose that the value function v(�) is a saddle function (concave in �
and convex in �). According to [5], a partial ordering �(s) for the set � may be
de�ned with respect to the set S
̂ of continuous saddle functions relative to the

�-simplex 
̂ = �� �:

Q1 �(s) Q2 ,
Z

̂
v(�; �)dQ1 �

Z

̂
v(�; �)dQ2; 8v(�) 2 S
̂: (20)

The set of extremal probability measures of � taken with respect to �(s) is then
de�ned according to

inf(s)� := fQljQl �(s) Q; 8Q;Ql 2 �g;
sup(s)� := fQujQ �(s) Qu; 8Q;Qu 2 �g; (21)

which represent the solutions of generalized moment problems (in the sense of
Krein and Nudelman [9]). It is proven in [4] that the sets inf(s)� and sup(s)�
are singletons. In this sense, these solutions, denoted Q̂l and Q̂u, may be viewed
as best discretization of the stochastic risk factors. The support of Q̂l and Q̂u is
�nite, whose elements may be viewed as generalized barycenters of the �-simplex

̂ = �� �. Both barycenters and their probabilities are completely determined
by the moments

Z

̂
�kdP̂ ;

Z

̂
�ldP̂ ;

Z

̂
�k�ldP̂ ; (22)

which characterize the set �. For the corresponding formulas of Q̂l and Q̂u, refer
to Frauendorfer ([4]).

The dual problems to the generalized moment problems (21) are semiin�nite
programs which will be motivated next.

Let L denote the set of bilinear functions L(�; �) (i.e., linear in � and � separately),
for which L(�) � v(�) on ���. Similarly, U denotes the set of bilinear functions
U(�; �) for which U(�) � v(�) on � � �. Hence, L(�) minorizes v(�) and U(�)
majorizes v(�) on �� �. Obviously,
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sup
L2L

Z

̂
L(�; �)dP̂ �

Z
v(�; �)dP̂ ;

inf
U2U

Z

̂
U(�; �)dP̂ �

Z
v(�; �)dP̂ :

(23)

The lefthand side in (23) represents the semiin�nite programs which bound the
expectation of the value function from below and above. The corresponding solu-
tions, denoted L̂ and Û , are completely determined by the �rst-order derivatives
of v(�) at the barycenters.
Due to strong duality it is proven that

Z

̂
L̂(�; �)dP̂ =

Z

̂
g(�; �)dQ̂l;Z


̂
Û(�; �)dP̂ =

Z

̂
g(�; �)dQ̂u:

(24)

Further, as the integral of the bilinear functions are completely determined by
the moments (22), it also holds that

Z

̂
L̂(�; �)dP̂ =

Z

̂
L̂(�; �)dQ̂l;Z


̂
Û(�; �)dP̂ =

Z

̂
Û(�; �)dQ̂u:

(25)

This way one obtains approximations for the value functions v(�) as well as for
the probability measure P̂ .

These approximations can be improved with re�nements of 
̂. Let a �-simplicial
partition of 
̂ be denoted by PJ ; i.e., PJ := f
̂j; j = 1; � � � ; Jg, where the
subcells are mutually disjoint, Cartesian products of simplices whose union equals

̂. Applying the above statements to each of these subcells 
̂j (j = 1; � � � ; J)
yields improved piecewise bilinear approximations L̂J(�); ÛJ(�) and Q̂J

l ; Q̂
J
u for

the value functions v(�) and for the probability measure P̂ , respectively.

In particular, let LJ denote the set of functions which are piecewise linear with
respect to the partition PJ and which minorize the value function. Analogously,
UJ denotes the set of piecewise linear majorants of v(�). Then L̂J(�); ÛJ(�) solve
the semiin�nite programs

sup
L2LJ

Z

̂
L(�; �)dP̂ �

Z
v(�; �)dP̂ ;

inf
U2UJ

Z

̂
U(�; �)dP̂ �

Z
v(�; �)dP̂ :

(26)

Again, these semiin�nite programs are duals of the corresponding generalized
moment problems with unique solutions Q̂J

l ; Q̂
J
u. In this sense, Q̂J

l and Q̂J
u may

13



be viewed as best discretization of the stochastic risk factors with respect to the
partition. The support of Q̂J

l and Q̂J
u is �nite, whose elements may be viewed as

generalized barycenters of the �-simplices 
̂j (j = 1; � � � ; J). Both barycenters
and their probabilities are completely determined by the corresponding conditio-
nal �rst-order and joint moments. From the dual viewpoint, L̂J(�) and ÛJ(�) are
completely determined by the �rst-order derivatives at the barycenters. Due to
the characteristic features of the methodology, L̂J(�) and ÛJ(�) are called barycen-
tric approximations of the value function. Being aware of the piecewise bilinearity
of L̂J(�) and ÛJ(�) with respect to the partition,

Z

̂
L̂J(�; �)dP̂l =

Z

̂
L̂J(�; �)dQ̂J

l ;Z

̂
ÛJ(�; �)dP̂l =

Z

̂
ÛJ(�; �)dQ̂J

u

(27)

hold and due to strong duality,

Z

̂
L̂J(�; �)dP̂l =

Z

̂
v(�; �)dQ̂J

l ;Z

̂
ÛJ(�; �)dP̂l =

Z

̂
v(�; �)dQ̂J

u

(28)

hold. Moreover, in case the diameters of all subcells tend towards 0 for J !
1, convergence of L̂J(�); ÛJ(�) to v(�) and weak convergence of Q̂J

l ; Q̂
J
u to P̂ is

ensured.

De�ning the associate approximate distribution functions with respect to v(�)
according to

F̂ J
l (v̂) = Q̂J

l (v(�; �) � v̂);

F̂ J
u (v̂) = Q̂J

u(v(�; �) � v̂);
(29)

implies 8v̂ 2 IR

lim
J!1

F̂ J
l (v̂) = lim

J!1
F̂ J
u (v̂) = F̂ (v̂); (30)

which con�rms the pointwise convergence of the approximate distribution func-
tions. Hence, F̂ J

l (v̂), F̂
J
u (v̂) may be accepted as approximation of F (v̂). It is

emphasized that due to the weak convergence of Q̂J
l ; Q̂

J
u to P̂ , the convergence

in (30) holds for value functions v(�) that are continuous on 
̂. If v(�) is a saddle
function in addition, the corresponding error can be quanti�ed at each stage J
via the bound

Z

̂
ÛJ(�; �)dQ̂J

u �
Z

̂
L̂J(�; �)dQ̂J

l > 0: (31)
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It is emphasized that F̂ J
l (v̂), F̂

J
u (v̂) and, hence, the error bound become available

by evaluating v(�) at the generalized barycenters. If the sequence of partitions
represents successive re�nements with the diameters of the subcells becoming
arbitrarily small, the error bound converges monotonously towards 0.

5. Approximating the P&L Distribution

Let the stochasticity of the risk factors ! with respect to the end of some �xed
holding period [0,t] be modelled by the probability space (
;B; P ). 
 is an
arbitrary measurable subset of IRM and may cover the entire space IRM . The
value function v(�) : IRM ! IR of the portfolio, whose risk has to be assessed by
means of the VaR approach, is given implicitly via some pricing model.

Take a measurable �-simplex 
̂ := ��� and an adequate �-simplicial partition
PJ := f
̂j; j = 1; � � � ; Jg with the property

P (
̂) � 1� � (32)

for some positive � that is su�ciently small and de�ne for any B 2 B,

P̂ (B) =
P (B \ 
̂)

P (
̂)
: (33)

Recalling F (v̂) = P (v(!) � v̂); F̂ (v̂) = P̂ (v(!) � v̂) and (32), the following
relation holds:

F̂ (v̂)� � � F (v̂) � F̂ (v̂) + �: (34)

Hence, whenever one manages to approximate F̂ with su�cient accuracy, this
approximation may also be accepted as su�ciently accurate with respect to F .

One may apply the methodology outlined above to derive the approximations
L̂J(�); ÛJ(�) and Q̂J

l ; Q̂
J
u for the value function v(�) and the probability measure

P̂ , respectively, which yield the desired approximations F̂ J
l (v̂); F̂

J
u (v̂) for F̂ (v̂)

and, hence, for F (v̂) due to (30) and (34). The corresponding VaR-estimates of
the �rst type with respect to level � are denoted v̂I;lJ;�; v̂

I;u
J;� and given by

F̂ J
l (v̂

I;l
J;�) = F̂ J

u (v̂
I;u
J;�) = �: (35)
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Being aware of the dimensionality of the underlying portfolio value functions and
asking for the capital at risk, it is useful to concentrate on loss events, i.e., on
those ! for which v(!) � 0. The numerical e�ort associated with approximating
F (�) : IR� ! [0; 1] heavily depends on how 'tricky' the sequence of partitions
is constructed. At the beginning of this section, it was emphasized that only
continuity of v(�) was supposed and the saddle property was relaxed. However,
having in mind that the diameters of the subcells tend towards 0, it makes sen-
se to provide additional concepts for identifying the saddle property in case of
its existence, at least, relative to some subcell 
̂j. Then, error bounds will be
available locally on 
̂j, and help identify e�cient re�nement strategies, that allow
for approaching F su�ciently fast and reliable. As long as the saddle property
cannot be identi�ed on 
̂j, the di�erence in (31) may be accepted as an estimate
of inaccuracy.

For determining a �-simplicial partition PJ+1 by means of a re�nement of PJ , a
subcell in PJ and an adequate edge are required to be chosen, subject to which the
subcell is split. The experiences made with barycentric approximation for solving
stochastic programs (see [4], [5]) make one aware of the fact that the choice of
both subcell and edge is one of the key steps for an appealing convergence. In
the following section, we report on the software package currently available for
approximating the P&L distribution and state �rst numerical results.

6. First Numerical Results

The current version of the package considers a simplex 
̂ and an adequate se-
quence of simplicial partitions, taking into account one of the following strategies
for subcell and edge selection. The longest edge of a subcell 
̂j is denoted `j, the

maximum loss with respect to the barycenters and vertices of 
̂j is denoted vj.
The subcell to partition may be chosen according to:

S1: Select that subcell 
̂j for which `j � P (
̂j) attains the maximum.

S2: Select that subcell 
̂j for which �vj � P (
̂j) attains the maximum.

In S1, the longest edge is taken into account to enforce that the diameters of
the subcells decrease, which �nally ensures weak convergence of the extremal
measures and herewith convergence of the approximate distribution functions to
the P&L distribution. In S2, we focus on improving the accuracy at the downside
of the P&L distribution.

Having selected the subcell 
̂j an adequate edge remains to be chosen:
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J = 50 S1/E1 S1/E2 S1/E3 S2/E1 S2/E3 BM

v1;6 -4.129 -12.749 -12.749 -3.219 -17.526 -4.562
v2;6 -86.875 -165.952 -75.341 -66.247 -75.086 -65.995
v3;4 -92.293 -85.950 -85.950 -87.967 -87.227 -84.443

Table 1: VaR-estimates with respect to � = 0:05

E1: Select the longest edge of 
̂j for which `j � P (
̂j) attains the maximum

E2: Select that edge along which the portfolio values di�er most.

E3: Select the edge along which the �rst order approximation of v is most
inaccurate. In case the �rst order approximation coincides with the value
function on 
̂j, take the longest edge.

E1 aims at decreasing diameters of the partitioned subcells and herewith at ap-
proximating the P&L distribution. E2 focuses on the downside approximation
of the P&L distribution due to the structural property of a simplex. E3 aims at
improving approximations of the risk pro�le by �-hedging. It is noted that only
E3 incorporates the �rst order information, the other strategies only require the
evaluation of v at the barycenters and vertices of the subcells.

The following three two-dimenional risk pro�les have been taken in normalized
polynomial form from a large FX-portfolio [2] for approximating their associated
P&L distribution by means of extremal measures.

v1;6(!1; !2) = 18:74!2
1 � 8!3

2

v2;6(!1; !2) = 43:29!1 � 8!3
2

v3;4(!1; !2) = �5:34(!1 � 1)3 � 2:67!2
1 + 32:04!1

+31:96!3
2 � 128:7!2 � 5:34

The two-dimensional risk factors are distributed normally with mean 0 and a
variance-covariance matrix

�1;6 :=

"
1 0:95

0:95 1

#
; �2;6 :=

"
1 0:5
0:5 1

#
; �3;4 :=

"
1 0:8
0:8 1

#
:

The achieved VaR-estimates with respect to a level of � = 0:05 and the associated
Monte-Carlo simulation benchmarks BM (due to [2]) are summarized in Table 1.
For the ease of exposition we listed the VaR-estimate

v̂IJ;� :=
v̂I;lJ;� + v̂I;lJ;�

2
; (36)
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which is achieved after 50 re�nements (i.e., J = 50). It is observed that the
e�ciency of some combination Si/Ej is strongly dependent on the degree of non-
linearity and on the monotonicity of the price sensitivities. In the current version,
no such structural properties are taken into account in the sense that these struc-
tural properties are not monitored during the re�nement process. Merely the fact
is exploited, that sooner or later with the subcells becoming su�ciently small the
saddle property with respect to these subcells arises, and the approximation of
the P&L distribution bene�ts from the characteristic features of the incorporated
extremal measures.

Nevertheless, the presented methodology considerably outperforms the current
practical approaches by their accuracy and the Monte-Carlo simulation by its
numerical e�ort (see in [2]). The corresponding approximations of the P&L dis-
tribution are displayed in Figures 1-3. The current version of the package requires
50 evaluations at the barycenters and 52 at the vertices of the subcells for J = 50
re�nements. For strategy E3, further 52 �rst order evaluations are needed. It
may be expected that this numerical e�ort can even be reduced in case the above
mentioned structural properties are exploited.

-40 -20 0 20 40 60

0.2

0.4

0.6

0.8

1

0.05

Figure 1: Approximation of the P&L distribution (risk pro�le 1/6, s.t. S1/E1)
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Figure 2: Approximation of the P&L distribution (risk pro�le 2/6, s.t. S2/E1)
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Figure 3: Approximation of the P&L distribution (risk pro�le 3/4, s.t. S2/E1)
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7. Conclusions and Outlook

The introduced methodology utilizes a special class of extremal measures for ap-
proximating the P&L distribution. Associated with the barycentric approxima-
tion of the risk pro�les monotonicity of the subdi�erential mappings is exploited
and provide investors with a kind of best discretization of the underlying stocha-
stic risk factors. In case the value functions have monotonous derivatives, the
payo�-functions are convex or concave depending on whether a position is held
short or long. Standard functions corresponding to bonds, interest rate swaps and
Black-Scholes option prices have been roughly discussed for motivating a compre-
hensive analysis of common value functions with respect to the saddle property
in the risk factors. A better understanding will certainly help derive appealing
aggregations techniques for keeping the VaR-evaluations numerically managable.
It is observed that the structural properties of �-simplices and their partitions
motivate the aggregation of short and long positions separately. In a next step,
such an analysis is intended to be applied to the value functions of instruments
in the BIS-portfolio.

The basics of the methodology has been outlined by introducing a pair of dual
problems, the generalized moment problem and the semiin�nite program. The
associated pair of dual solutions, the extremal majors and the piecewise biline-
ar functions provide adequate approximations of both the risk pro�les and the
risk factor distributions, termed barycentric approximations. In case a proper
re�nement process is installed convergence is ensured by weak convergence of
the extremal measures, implying the convergence of the VaR-estimates to the
actual VaR values. If the saddle property is identi�ed, error bounds help as-
sess the inaccuracy of the approximations. This motivates the investigation of
e�cient procedures for saddle property identi�cation with respect to various risk
factor regions and for controlling the re�nement process, such that convergence
is appealing and numerically manageable

The current implemetation of this methodology considers a simplex and an ade-
quate sequence of simplicial partitions, taking into account useful strategies for
subcell and edge selection. It is observed that the e�ciency of selection strate-
gies is strongly dependent on the degree of nonlinearity and the monotonicity of
price sensitivities. In the current version no such structural properties are taken
into account explicitly, only implicitly by the characteristic features of extremal
measures. In this sense, these structural properties are not exploited explicitly
within the re�nement process. Incorporating the above-mentioned ��simplices,
aggregation techniques, and saddle property identifying procedures into the packa-
ge will certainly increase the e�ciency of the methodology and its applicability
to portfolios of larger dimensions.
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