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Abstract

The price of an American style contract on assets driven by Lévy processes with in-
finite jump activity is expressed as solution of a parabolic variational integro-differential
inequality (PIDI). A Galerkin discretization in logarithmic price using a wavelet basis is
presented with compression of the moment matrix of the jump part of the price process’
Dynkin operator. An iterative solver with wavelet preconditioning for the resulting large
matrix inequality problems is presented and its efficiency is demonstrated by numerical
experiments.
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1 Introduction

In asset pricing, models beyond the classical Black-Scholes (B-S) have been proposed for the
stochastic dynamics of the risky asset: we mention only stochastic volatility models and
‘stochastic clocks’. The latter lead to so-called jump-diffusion price processes: the Wiener
process in the B-S model is replaced by a Lévy process (see e.g. [31, 3, 17, 30, 11, 8, 9] and
[5, 35] and the references there for background information on Lévy processes). Such processes
allow more realistic modelling of the price dynamics for the risky asset (see e.g. [17]). The
inclusion of jumps into the asset price dynamics has been investigated for several years – let
us mention here only [2] and the references there. In almost all papers we are aware of, the
jumps in the price process have been modelled as finite intensity processes, as e.g. a Poisson
process, i.e. in any finite time interval only a finite number of large jumps occur. In the early
90ies, however, processes with infinite intensity have been proposed. We mention here only
the Variance Gamma (VG) [31, 30] and the so-called CGMY models [11].

For pricing European Vanilla contracts on assets with Lévy price processes, the explicitly avail-
able characteristic function allows to apply Fourier-Laplace transformations for the solution of
the pricing problem. This approach has been used e.g. in [12].
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For American style contracts with such price processes, the transformation methods do not
seem to be generally applicable. We mention that the analytical tool of Wiener-Hopf factor-
ization allows, at least for infinite horizon problems, to derive semi-analytical solutions also for
American style contracts [10]. The exercise boundary and the solution of the free boundary
value problem can be expressed in terms of the factors from the Wiener-Hopf factorization.
These factors are, except for some particular cases, not known explicitly, and in general very
difficult to compute. Moreover, these methods fail for time-dependent or local volatility mod-
els, or for finite maturity. Also, general pay-off functions arising in American style digital
contracts are not easily handled by such semi-analytical approaches.

The analysis and implementation of fast, deterministic pricing schemes for American style
contracts on assets driven by general Lévy processes is the purpose of the present paper. Our
approach is based on finite element solution of the associated deterministic differential equa-
tion. This equation involves the Dynkin operator of the semigroup generated by the price
process which for Lévy processes is an integro-differential operator. Upon discretization, the
linear systems to be solved in each implicit time step have dense and ill-conditioned stiffness
matrices. We propose here a spline wavelet basis for discretization in the (logarithmic) price
variable which allows to ‘compress’ these matrices to sparse, well-conditioned ones that can be
inverted by iterative schemes in almost linear complexity while not affecting the accuracy of
the computed prices. For American style contracts, the wavelet basis allows to precondition the
iterative solver for the associated Linear Complementarity Problems (LCPs) in each time step.
The algorithm allows to treat any Lévy price process, even pure jump processes with infinite
jump intensity. Moreover, general pay-off functions are admissible allowing in particular to
handle compound options, with contracts of European or American style. For infinite activity
jump processes, the process’ Lévy measure has a density with respect to the Lebesgue measure
which is nonintegrable and must be interpreted in the sense of distributions. We present a
variational framework for the associated parabolic integro-differential inequality which acco-
modates nonintegrable Lévy densities. The integro-differential inequality is discretized using
the backward Euler scheme in time and a wavelet-based finite element discretization in (loga-
rithmic) price. We show that using the wavelet type basis functions, the condition number of
the resulting large matrix inequality problems remains bounded independent of the discretiza-
tion level. This allows to conclude the convergence of a fixed point type iteration with a rate
which is independent of the meshwidth.

The outline of the paper is as follows: in Section 2, we present the admissible price processes.
Section 3 contains the formulation of the American style pricing problem and the derivation
of the price as solution of a parabolic integro-differential inequality. Section 4 discusses the
discretization of the inequality – here, we show that the moment matrix due to the nonlocal
part of the parabolic integrodifferential operator can be compressed to an approximate, sparse
matrix while still having bounded condition number. Some a-priori error bounds for the nu-
merical solution are also stated. In Section 5, we then address the numerical solution of the
large complementarity problems in each time-step. We prove that a fixed point iteration con-
verges at a rate which is independent of the discretization parameter and give a generalization
of Cryer’s algorithm in the wavelet basis to locate the exercise boundary. Section 6 contains
numerical results obtained with our approach. They indicate in particular the failure of the
smooth fit principle in certain pure jump price models.
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2 Price Processes

2.1 Lévy processes

Let (Ω,F , (Ft)0≤t<∞,P) be a filtered probability space satisfying the usual hypothesis. Let
X = (Xt)0≤t<∞ withX0 = 0 a.s. be a Lévy process, i.e., a process with stationary, independent
increments that is stochastically continuous [5, 35].

The Lévy-Khintchine formula describes explicitly a Lévy process in terms of its Fourier trans-
form EQ[e−iuXt ] under a chosen equivalent martingale measure Q:

EQ[e−iuXt ] = e−tψ(u) (2.1)

for some function ψ called the Lévy exponent of X. It has the following representation

ψ(u) =
σ2

2
u2 + iαu

+
∫
|x|<1

(1− e−iux − iux)νQ(dx) +
∫
|x|≥1

(1− e−iux)νQ(dx) (2.2)

for some σ, α ∈ R and for a measure νQ on R\{0} satisfying∫
R

min(1, x2)νQ(dx) <∞. (2.3)

The Lévy measure νQ(dx) measures the arrival rate of jumps of size x. The Lévy-triple
(σ, α, νQ) completely determines Xt and the characteristic exponent ψ is related to the symbol
of the nonlocal operator LQ

X which is the infinitesimal generator of the transition semi-group
of Xt under the chosen equivalent martingale measure Q [35, 5]. We assume here that the
equivalent martingale measure Q has been chosen by some procedure, we refer to [15, 16, 19, 13]
and the references therein for various results in this direction.

2.2 Variance Gamma Process

The variance gamma process [30, 31] is a Brownian motion with drift in which the calendaristic
time has been changed to a ‘business’ time modeled by a gamma process γ(t; ν) with mean
rate unity and variance rate ν

XV G(t;σ, ν, θ) = θγ(t; ν) + σWγ(t;ν). (2.4)

From the density of the gamma process

fγ(t;ν)(x) =
xt/ν−1e−x/ν

νt/νΓ(t/ν)

one obtains the characteristic function of the gamma process

φγ(t;ν)(u) = E[eiuγ(t;ν)] =
(

1
1− iνu

)t/ν
and the characteristic function of the variance gamma process has the form

φXV G(t;σ,ν,θ)(u) = E[eiuXV G(t;σ,ν,θ)] =
(

1
1− iθνu+ σ2νu2/2

)t/ν
. (2.5)
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This expression of the characteristic function φXV G(t;σ,ν,θ) together with

1
1− iθνu+ σ2νu2/2

=
1

1− iηpu
· 1
1 + ηnu

where

ηp =

√
θ2ν2

4
+
σ2ν

2
+
θν

2
, ηn =

√
θ2ν2

4
+
σ2ν

2
− θν

2
(2.6)

lead to another interpretation of the variance gamma process, namely as the difference of two
independent gamma processes

XV G(t;σ, ν, θ) law
= γp(t; ηp/ν, η2

p/ν)− γn(t; ηn/ν, η2
n/ν). (2.7)

The representation (2.7) of the variance gamma process and the representation of the Lévy
density for the gamma process lead to the following form of the Lévy density for the VG process

kV G(x) =


1
ν
· e

− 1
ηn
|x|

|x|
if x < 0

1
ν
· e

− 1
ηp
|x|

|x|
if x > 0.

(2.8)

The VG process is a process of infinite activity, i.e.,
∫

R
kV G(x)dx = +∞.

2.3 CGMY process

The CGMY process [11] generalizes the VG process by adding a new parameter in the Lévy
density that allows the resulting Lévy process to have both finite or infinite activity and finite
or infinite variation. Specifically, the Lévy density of the CGMY process is given by

kCGMY (x) =


C
e−G|x|

|x|1+Y
if x < 0

C
e−M |x|

|x|1+Y
if x > 0,

(2.9)

where C > 0, G,M > 0 and Y < 2. The case Y = 0 is the special case of the variance gamma
process.
The parameter C is related to the overall level of activity, G and M control the exponential
rate of decay at ∓∞ of the Lévy density and lead to skewed distributions if they are unequal. If
G = M one obtains Lévy processes from the Koponen family [26]. Empirical evidence however
indicates that the probability density functions of returns are almost symmetric at the origin
but that the left tails are fatter than the right ones. For G < M indeed the left tail of the
distribution of Xt is heavier than the right tail consistently with the distribution implied from
the option prices. The parameter Y is related to the fine structure of the stochastic process.
Remarkably, the characteristic function of the CGMY process is available in closed form [11].

3 American Option Pricing

Our purpose is the valuation of American-style options, i.e., options that can be exercised at
any time up to the expiration date T , on an underlying with price process Xt. Most listed
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stock options, including those on European exchanges, are American-style options. The early
exercise feature makes their valuation more complex than that of European-style options in
a Black-Scholes world. It also implies higher prices for an American-style option than for
a European contract with the same price process. We formulate the pricing problem of an
American-style contract as optimal stopping problem for Xt and express prices as solutions of
parabolic variational integro-differential inequalities. To accomodate general pay-off functions
which may grow polynomially at infinity, these inequalities are set in Sobolev spaces with
exponential weights. This setting is the basis for numerical solution methods in the next
sections.

3.1 Optimal stopping problem

Consider the price f(St, t) of an American option with expiry date (maturity) T when the
risk-neutral dynamics of the risky asset St are given by the following geometric law:

St = S0e
(r+c−σ2/2)t+Xt (3.1)

where Xt is a Lévy process of the form Xt = σWt + Yt, with Wt denoting the Brownian
motion and Yt being a quadratic pure jump Lévy process independent of Wt as in Section 2.
The correction parameter c in (3.1) ensures that the mean rate of return on the asset is
risk-neutrally r, i.e. that e−ct = EQ[eYt ]. Let g(S) denote a pay-off function of the option
(conditions on g shall be discussed below). The problem of optimal exercising is equivalent to
an optimal stopping problem and the value f(St, t) of the contract is given by

f(St, t) = supt≤τ≤TEQ[e−r(τ−t)g(Sτ )|Ft], (3.2)

where the supremum is taken over all stopping times τ on the probability space generated by
the asset price process. Equation (3.2) means that the owner chooses the optimal exercise
policy to maximize the expected discouted pay-off.

Remark 3.1 For the American put g(S) = (K − S)+, with K > 0 being the strike price,
and for each t there exists a critical value S∗t such that for all St ≤ S∗t the value of the
American put option is the value of immediate exercise, i.e., f(t, St) = g(St), while for St > S∗t
the value exceeds the immediate exercise value. The curve S∗t is referred to as the critical
exercise boundary, the region C = {(t, S)|S > S∗t } is called the continuation region and the
complement E of C is the exercise region. For the detailed study of the free boundary problem
for the American put in the Brownian case, see e.g. [36], Karatzas and Shreve (1998) [25],
Musiela and Rutkowski (1997) [33].

3.2 Parabolic integro-differential inequality

Let µ(dx,dt) denote the integer valued random measure (the jump measure) that counts the
number of jumps of Yt in space-time. By stationarity of Lévy processes, the compensator of
the measure µ(dx,dt) has the form νQ(dx)× dt, with dt being the Lebesgue measure. In the
following we will assume that the Lévy measure νQ(dx) has a density kQ, the Lévy kernel, with
respect to Lebesgue measure so that νQ(dx) = kQ(x)dx and we will drop the subscript Q.

Remark 3.2 By (3.1), (2.1)–(2.2) and by EQ[St] <∞ we obtain that EQ[eXt ] = e−tψ(i) <∞,
with ψ being the Lévy exponent in (2.2). As a consequence, the Lévy density k has to satisfy
both the integrability condition (2.3) and

∫
|x|≥1 e

xk(x)dx < ∞. For the case of the CGMY-
model (2.9) these integrability conditions for the Lévy density imply that Y < 2 and M > 1.
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For sufficiently regular g and for σ 6= 0 the price f in (3.2) is known to satisfy the following
parabolic integro-differential inequality (see, e.g. [4])

∂f

∂t
(t, S) +

σ2

2
S2 ∂

2f

∂S2
(t, S) + rS

∂f

∂S
(t, S)− rf(t, S)

+
∫

R
[f(t, Sex)− f(t, S)− S ∂f

∂S
(t, S)(ex − 1)]ν(dx) ≤ 0

f(t, S) ≥ g(S) (3.3)

(f(t, S)− g(S))
(
∂f

∂t
(t, S) +

σ2

2
S2 ∂

2f

∂S2
(t, S) + rS

∂f

∂S
(t, S)− rf(t, S)

+
∫

R
[f(t, Sex)− f(t, S)− S ∂f

∂S
(t, S)(ex − 1)]ν(dx)

)
= 0

f(T, S) = g(S).

We also mention [10] for theoretical results on the relation between the solution of the free
boundary value problem and that of the optimal stopping for the case of the perpetual Amer-
ican put, i.e., when T =∞.

For numerical treatment, we change to logarithmic price x = ln(S) ∈ R and time to maturity
τ = T − t and introduce u(τ, x) = f(T − τ, ex). If we denote by ψ(x) = g(ex), the resulting
parabolic integro-differential inequality for the value function u reads

∂u

∂τ
+AB−S[u] +Ajump[u] ≥ 0 in (0, T )× R (3.4)

u(τ, x) ≥ ψ(x) a.e. in [0, T ]× R (3.5)

(u(τ, x)− ψ(x))
(
∂u

∂τ
+AB−Su+Ajump[u]

)
= 0 in (0, T )× R (3.6)

u(0, x) = ψ(x), (3.7)

where the infinitesimal generator (or Dynkin operator) of the transition semi-group of Xt is
given by A = AB−S +Ajump with

AB−S[ϕ] = −σ
2

2
d2ϕ

dx2
+ (

σ2

2
− r)dϕ

dx
+ rϕ,

Ajump[ϕ] = −
∫

R

(
ϕ(x+ y)− ϕ(x)− (ey − 1)

dϕ
dx

(x)
)
k(y)dy.

Remark 3.3 Unless explicitly stated otherwise, we assume in the following that the price
process has a non-zero diffusion component, i.e. σ 6= 0.

3.3 Variational formulation

Of particular interest will be American Put contracts where the pay-off is g(S) = (K − S)+.
The pay-off in log-price variable x = log(S) is given by

ψ(x) = (K − ex)+. (3.8)

We note in passing that all our results apply to more general pay-off functions ψ(x) with
polynomial growth as |x| → ∞ as well.
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Our pricing algorithm will be based on a Galerkin discretization of (3.4)–(3.7) in the logarithmic
price x = log(S). This Galerkin discretization will be based on a variational formulation of
(3.4)–(3.7). Since the pay-off ψ does not decay as |x| → ∞, we use Sobolev spaces with
exponential weights, see also [23] for this technique in the Brownian case: for µ, ν > 0 define

η(x) :=
{
νx if x < 0
µx if x > 0

(3.9)

The weighted Sobolev spaces with exponent η are given by

Hj
η(R) := {v ∈ L1

loc(R) | dkv
dxk

eη ∈ L2(R) ∀ k = 0, 1, . . . , j}.

We introduce the bilinear form aη(·, ·) corresponding to the space operatorA: for ϕ, φ ∈ C∞
0 (R)

we define

aη(ϕ, φ) = aηB−S(ϕ, φ) + aηjump(ϕ, φ) :=
∫

R
A[ϕ](x)φ(x)e2η(x)dx

= −σ
2

2

∫
R

(
d2ϕ

dx2
(x)− dϕ

dx
(x)
)
φ(x)e2η(x)dx− r

∫
R

(
dϕ
dx

(x)− ϕ(x)
)
φ(x)e2η(x)dx

−
∫

R

∫
R

{
ϕ(x+ y)− ϕ(x)− dϕ

dx
(x)(ey − 1)

}
k(y)φ(x)e2η(x)dydx. (3.10)

The following theorem implies the well-posedness of the integro-differential inequality. It shows
that aη(·, ·) can be extended continuously to H1

η (R)×H1
η (R).

Theorem 3.4 Assume that the Lévy density k(y) has exponential tails and the exponent η
in (3.9) satisfies µ < ν and

∫
R e

−η(y)|y|k(y)χ{|y|≥1}dy < +∞. Then aη(·, ·) can be extended
continuously to a bounded bilinear form on H1

η (R) ×H1
η (R). Moreover, aη(·, ·) is coercive on

H1
η (R)×H1

η (R). More precisely, there exist αη, βη > 0 and Cη > 0 such that

|aη(ϕ, φ)| ≤ Cη‖ϕ‖H1
η(R)‖φ‖H1

η(R) ∀ϕ, φ ∈ H1
η (R) (3.11)

aη(ϕ,ϕ) ≥ αη‖ϕ‖2H1
η(R) − βη‖ϕ‖

2
L2

η(R) ∀ϕ ∈ H1
η (R). (3.12)

The proof of this assertion is given in Appendix A.

In what follows we identify the bilinear form defined in (3.10) with its extension to H1
η (R) ×

H1
η (R). Note that ψ ∈ H1

η (R) for all µ, ν > 0.

Admissible solutions for the variational formulation of (3.4) –(3.7) will be sought in the convex
cone

Kψ := {v ∈ H1
η (R) | v ≥ ψ a.e. x}.

The variational formulation of the parabolic integro-differential inequality (3.4)–(3.7) reads:

Find u ∈ L2((0, T );H1
η (R)),

∂u

∂τ
∈ L2((0, T );L2

η(R)) such that u(τ, ·) ∈ Kψ almost everywhere

in (0, T ) and such that for all v ∈ H1
η (R) ∩ Kψ

(
∂u

∂τ
, v − u)L2

η(R) + aη(u, v − u) ≥ 0 a.e. in (0, T ), (3.13)

u(0, ·) = ψ. (3.14)
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If Aψ ∈ L2
η, by (3.11) and (3.12) the variational inequality (3.13)–(3.14) admits a unique

solution u (see [20], Chapter 6, Section 2) and it holds

u,
∂u

∂t
∈ L2(0, T ;H1

η ) ∩ L∞(0, T ;L2
η). (3.15)

Since u ∈ H1
η (R) with η as in (3.9), u decays exponentially at +∞. Heuristically, at −∞ the

exact boundary condition is ψ(−∞) = K.

For the numerical solution, we therefore localize this problem on a bounded domain ΩR =
(−R,R), R > 0 sufficiently large, with homogeneous essential boundary conditions at ±R.

3.4 Localization

To prepare the numerical solution of (3.13)–(3.14), we solve for the the excess to pay-off
function

U = u− ψ ∈ {v ∈ H1
η (R) | v ≥ 0 a.e. x}

rather than for u. We also restrict the range of admissible prices to a bounded domain ΩR =
(−R,R), with R > 0 sufficiently large and solve for UR(τ, ·) ∈ K0 := {v ∈ H1

0 (ΩR) | v ≥ 0},

UR ∈ L2((0, T );H1
0 (ΩR)),

∂U

∂τ
∈ L2((0, T );L2(ΩR)) such that

(
dUR

dτ
, v − UR)L2(ΩR) + a(UR, v − UR) ≥ −a(ψ, v − UR) (3.16)

a.e. in (0, T ), ∀ v ∈ V ∩ K0

UR(0, ·) = 0 (3.17)

where V := H1
0 (ΩR) and the bilinear form a(ϕ,ψ) is, for all ϕ,ψ ∈ H1

0 (ΩR), given by

a(ϕ, φ) = −σ
2

2

∫
ΩR

(
d2ϕ

dx2
(x)− dϕ

dx
(x)
)
φ(x)dx

− r
∫

ΩR

(
dϕ
dx

(x)− ϕ(x)
)
φ(x)dx

−
∫

ΩR

∫
R

{
ϕ(x+ y)− ϕ(x)− dϕ

dx
(x)(ey − 1)

}
k(y)φ(x)dydx.

To simplify the notation, we drop the superscript R from UR, i.e., we denote by U = UR.

Proposition 3.5 Theorem 3.4 holds with aη replaced by a and H1
η (R) replaced by H1

0 (ΩR).
With obvious notations, a = aB−S + ajump and there exists a positive constant C = C(R) > 0
such that for all ϕ ∈ H1

0 (ΩR)

aB−S(ϕ,ϕ) ≥ Cσ2‖ϕ‖2H1(ΩR), ajump(ϕ,ϕ) ≥ 0.

For a proof, see e.g. Remark 3.6 in [32]. Due to these properties, (3.16)–(3.17) admits a unique
solution. For the pure jump case σ = 0, the parabolic problem still has eigenvalues with the
correct real part, so that our solution algorithm below remains stable also in this limiting case.
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4 Discretization

Since closed form solutions of (3.13), (3.14) are not available in general, numerical solutions of
the pricing problem are necessary. To this end, we discretize (3.16)–(3.17) by a Finite Element
(FE) method in ΩR and by the backward Euler scheme in time, reducing it to a sequence of
matrix inequality problems. Since Ajump is nonlocal and unbounded, its stiffness matrix is
densely populated and ill-conditioned.

Using a wavelet basis of the corresponding finite dimensional space, we show that the matrix
for Ajump can be ‘compressed’, i.e. approximated by a sparse and well conditioned matrix
without compromising accuracy.

4.1 Time stepping

We discretize (3.16)–(3.17) by a Finite Element (FE) method in ΩR and by the backward Euler
scheme in time, reducing it to a sequence of matrix inequality problems.
Let k = T/M , with M ∈ N be a time step. Let us denote by Um, m = 0, 1, . . . ,M the solution
to the following backward Euler discretization of (3.16)–(3.17):
Find Um+1 ∈ V ∩ K0, m = 0, 1, . . . ,M − 1, such that

(∂Um, v − Um+1)L2(ΩR) + a(Um+1, v − Um+1) ≥ −a(ψ, v − Um+1) (4.1)

a.e. in (0, T ), ∀ v ∈ V ∩ K0

U0 = 0. (4.2)

Here we denoted by ∂ the finite difference operator ∂Um := (Um+1 − Um)/k.

4.2 Space discretization. LCP

The sequence (3.16)–(3.17) of elliptic variational inequalities can be reduced to a sequence of
Linear Complementarity Problems (LCPs) by restricting V to a finite dimensional subspace
VN .

As in Finite Element approaches to the B-S equation, we use spaces VN of continuous piecewise
linear functions with respect to a equidistant subdivision T : −R = x0 < x1 < · · · < xN+1 = R
of the truncated domain ΩR:

VN = span
{
v(x) ∈ V : v|(xi−1,xi), xi ∈ T , is linear

}
.

The Finite Element (FE) formulation to (4.1)–(4.2) reads:
Find UmN : (0, T )→ VN ∩ K0 such that

(∂UmN , v − Um+1
N )L2(ΩR) + a(Um+1

N , v − Um+1
N ) ≥ −a(ψ, v − Um+1

N ) (4.3)

a.e. in (0, T ), ∀ v ∈ VN ∩ K0

U0
N = 0. (4.4)

The approximate solutions UmN converge, as N → ∞, to the exact solution: by a result of
Johnson [24] there holds, under some mild restriction on the active set where UmN vanishes
which usually holds in the pricing of American put contracts, the error estimate

max
m
‖um − UmN ‖L2(Ω) +

(
M∑
m=1

k‖um − UmN ‖2H1(Ω)

)1/2

≤ C(k3/4| log k|1/4 + h)
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which indicates convergence as the time-steps are reduced (k → 0) or as the meshwidth h =
2R/N in the price variable tends to zero.

The sequence of finite dimensional variational inequalities (4.3)–(4.4) corresponds to a sequence
of matrix variational inequalities which we now derive.
Let B = {Φj}Nj=1 be a basis of VN , i.e. VN = Span (Φj)Nj=1 and denote by M the mass
matrix with respect to B and by A the stiffness matrix of a(·, ·) with respect to B, i.e., Mi,j =
(Φi,Φj)L2(ΩR), Ai,j = a(Φj ,Φi). Notice that the stiffness matrix A is, due to the nonlocal
Dynkin operator, nonsparse.
We denote likewise by F the load vector with components Fj = −a(ψ,Φj) and by v the
coefficient vector of the FE function v ∈ VN with respect to B.
Then coefficient vectors v of FE functions v in VN ∩ K0 are vectors in RN satisfying compo-
nentwise

Cv ≥ 0, (4.5)

where C stands for the change of basis matrix from B into the canonical ‘hat’ function basis
{Ψj}Nj=1 with Ψj(x) = max(0, 1− |x− xj |/h).
With these notations, (4.3)–(4.4) can be equivalently rewritten as a sequence of LCPs:
Find UmN ∈ K0 := {v ∈ RN | Cv ≥ 0}, m = 0, 1, . . . ,M , such that

(v − Um+1
N )>(M + kA)Um+1

N ≥ (v − Um+1
N )>(kF + MUmN ) ∀ ∈ v ∈ K0. (4.6)

4.3 Wavelet basis

Rather than the classical “hat” functions Ψj(x) = max(0, 1 − |x − xj |/h), we choose as basis
B of VN biorthogonal spline wavelets with a larger support. These slightly more involved
shape functions serve two purposes: first, in the wavelet basis the bilinear form a(·, ·) will
correspond to a matrix where most elements are negligible, yielding an approximate bilinear
form ã(·, ·) and a “compressed”, sparse matrix Ã with only N logN nonvanishing entries.
The error introduced by this matrix compression is not larger than the error due to Galerkin
discretization [34].
Second, the wavelet basis will also allow optimal preconditioning. Perturbed bilinear forms ã
are obtained by various matrix compression techniques which reduce the dense matrices A to
sparse ones which can be manipulated in linear complexity [34].

To define the wavelets, we consider dyadic partitions TL of ΩR into N +1 = 2L subintervals of
equal size. We set N = NL and denote VN by VL to indicate the dependence on the subdivision
level L.
We use piecewise linear, continuous biorthogonal wavelets ψlj that in the interior of ΩR have val-
ues 0, . . . 0,−1, 2,−1, 0, . . . , 0. In the case of Dirichlet conditions the values are 0, 2,−1, 0, . . . , 0
(and similarly at the right boundary), see Figure 1. Note that the boundary wavelets do not
have vanishing moments.
The support of wavelet ψlj is denoted by Slj := suppψlj . It has diameter bounded by C 2−l.
Wavelets ψlj with S̄lj ∩ ∂ΩR = ∅ have vanishing moments up to order 1, i.e.,

(ψlj , 1) = (ψlj , x) = 0. (4.7)

The functions ψlj for l ≥ l0 are obtained by scaling and translation of the generating wavelets
ψ1
j , j = 0, 1, 2 shown in Figure 1. Any v ∈ VL has the representation

v(x) =
L∑
l=0

M l∑
j=1

vljψ
l
j(x)

10
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Figure 1: Generating wavelets: interior wavelets (right) and boundary wavelets for Dirichlet
boundary conditions (left).

with vlj = (v, ψ̃lj) where ψ̃lj are the so-called dual wavelets (note that in a Galerkin scheme
these dual basis functions never enter explicitly).
Any v ∈ V can be written as infinite series

v(x) =
∞∑
l=0

M l∑
j=1

vljψ
l
j(x)

with vlj = (v, ψ̃lj) which converges in H̃θ(ΩR) := {v|ΩR
| v ∈ Hθ(R), v|R\ΩR

= 0} for 0 ≤ θ ≤ 1.
For v ∈ V we can define a projection PL : V → VL by truncating the wavelet expansion in the
log-price variable

PLv :=
L∑
l=0

M l∑
j=1

vljψ
l
j(x). (4.8)

For preconditioning our LCP solver, we exploit the norm equivalence

∀v ∈ H̃θ(ΩR) : c1‖v‖2H̃θ
≤

∞∑
l=0

M l∑
j=1

|vjl |
222lθ ≤ c2‖v‖2H̃θ

, 0 ≤ θ ≤ 1. (4.9)

4.4 Matrix compression

The bilinear form a on VL × VL in the wavelet basis corresponds to a matrix A with elements
A(l,j),(l′,j′) = a(ψlj , ψ

l′
j′). The Lévy density of Ajump satisfies the Calderón-Zygmund type

estimate
|Dm

y k(y)| ≤ C(m)|y|−(1+Y+m) ∀m ∈ lN0,∀ y 6= 0 (4.10)

(everything that follows holds also for more general densities k(x, y) which satisfy (4.10) uni-
formly with respect to x; such densities arise for homogeneous ‘diffusions with jumps’ Xt in the
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sense of Definition 2.18 in [22]). Relation (4.10) implies the decay of the matrix elements with
increasing distance of the supports of corresponding wavelets. To be specific, we define the
compressed matrix Ã and the corresponding bilinear form ã by setting certain small matrix
elements in A to zero: with A(j,l),(j′,l′) = a(ψlj , ψ

l′
j′), we set

Ã(j,l),(j′,l′) :=
{
A(j,l),(j′,l′) if dist(Slj , S

l′
j′) ≤ δl,l′ or Slj ∩ ∂ΩR 6= ∅

0 otherwise,
(4.11)

where Slj := supp (ψlj). Here the truncation parameters δl,l′ are given by

δl,l′ := κmax{2−L+α̂(2L−l−l′), 2−l, 2−l
′} (4.12)

The meaning of κ > 0 and α̂ > 0 in (4.11)–(4.12) is as follows: the wavelet basis ψlj implies
a block structure of the matrix A. The compressed matrix Ã obtained from (4.11) retains
only diagonals of each block Al,l′ resulting in the typical ‘finger-band’ structure of wavelet-
compressed stiffness matrices (see [32] and the references there). In (4.12), the parameter κ
governs the bandwidth in the largest block ÃL,L of Ã which is fixed independently of L while
α̂ governs the growth of this bandwidth in the blocks Ãl,l′ with l + l′ < 2L, see Figure 2.

nnz = 16097, N2 = 65025 nnz = 39191, N2 = 261121

Figure 2: Sparsity pattern of the compressed matrix Ã in wavelet basis; compression parame-
ters: κ = 1.0, α̂ = 0.8; CGMY parameters: C = 1.0, Y = 1.4, G = 0.4, M = 1.6; L = 7 (left)
and L = 8 (right).

If the truncation parameters α̂ and κ are suitably chosen, the corresponding perturbation
in the bilinear forms is small. To quantify this, we need to consider functions in V which have
additional regularity and introduce for this purpose the spaces Hs(ΩR) which are defined as

Hs(ΩR) =
{

V for s = 1,
V ∩Hs(ΩR) for s > 1.

Proposition 4.1 [34] For any δ > 0 there exists κ in (4.12) sufficiently large such that for
all L > 0 holds

|a(u, v)− ã(u, v)| ≤ δ ‖u‖H1(ΩR) ‖v‖H1(ΩR) ∀u, v ∈ VL. (4.13)
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If additionally u ∈ H2(ΩR), then for

α̂ ≥ 4
4 + Y

, (4.14)

holds
|a(PLu, v)− ã(PLu, v)| ≤ Ch| log h|ν‖u‖H2(ΩR) ‖v‖H1

0 (ΩR) ∀v ∈ VL (4.15)

holds with ν = 3
2 if equality holds in (4.14), and ν = 1

2 otherwise.
If α̂ < 1 in (4.12), then the number of nonzero entries in Ã is bounded by CNL logNL. In

the case Y = 0 (which corresponds to the VG process), α̂ = 1 and the above result still holds
with at most CNL(logNL)2 nonzero entries.

We see that for 1 ≥ α̂ ≥ 4/(4 + Y ) in (4.14), the matrix Ajump can be compressed to a matrix
Ã with O(N logN) nonzero entries with small difference between the bilinear forms.

Remark 4.2 If σ > 0 the price process contains a diffusion component and the order of the
operator A is 2. In the pure jump case, σ = 0 and the order of A is, in general, max{1, Y }. The
consistency result of Proposition 4.1 can be adapted to this case (with respect to a different
scale of spaces), see [34] for a proof.

Let 0 ≤ ω ≤ 1 and define H̃ω(ΩR) := {u|ΩR
: u ∈ Hω(R) and u|R\ΩR

= 0}. For ω 6= 1/2 it
holds H̃ω(ΩR) = Hω

0 (ΩR) which is defined as the closure of C∞
0 (ΩR) with respect to the norm

in Hω(ΩR).

Proposition 4.3 Assume that Xt is a pure jump Lévy process (i.e. σ = 0) of CGMY type
with density k as in (2.9) with 0 < Y < 2. Then there exist positive constants α = α(R) > 0
and β = β(R) > 0 such that

a(u, u) ≥ α‖u‖2
H̃Y/2(ΩR)

− β‖u‖2L2(ΩR), (4.16)

i.e., the bilinear form a(·, ·) satisfies a G
◦
arding inequality in H̃Y/2(ΩR).

Proof. It holds that [32]

a(u, u) = (Ajump[u], u) =
1
2

∫
ΩR

∫
ΩR

(u(x)− u(y))2k(y − x)dydx. (4.17)

Writing k = k0 + (k − k0) with k0(y) = C/|y|1+Y we obtain that

a(u, u) =
C

2

∫
ΩR

∫
ΩR

(u(x)− u(y))2

|x− y|1+Y
dxdy+

1
2

∫
ΩR

∫
ΩR

(u(x)−u(y))2(k−k0)(y−x)dydx. (4.18)

Then the first term in (4.18) above is the H̃Y/2(ΩR) semi-norm of u [1] and the second double
integral corresponds to a compact, lower order perturbation.

Remark 4.4 In the pure jump case, i.e., when σ = 0 and for Xt being a Lévy process of
CGMY type it holds

A[u](x) = Ajump[u](x) = −
∫

R
u′′(x+ y)k(−2)(y)dy

+c1(Y ;G,M)u′(x) + c0(Y ;G,M)u(x), ∀u ∈ C∞
0 (ΩR)

(4.19)
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where
k(−2)(x) = p.f.

∫ x

0
k(y)(x− y)dy

with integral to be understood in the finite part sense and

c1(Y ;G,M) =
∫ ∞

0

ex − 1
x1+Y

(e−Mx − e−(G+1)x)dx, c0(Y ;G,M) = p.f.
∫ ∞

0

e−Mx + e−Gx

x1+Y
dx.

For Y ∈ (1, 2), H̃Y/2(ΩR) = H
Y/2
0 (ΩR) and (u′, v) can be understood as duality between

HY/2−1(ΩR) ∼= (H1−Y/2(ΩR))∗ and H1−Y/2(ΩR), since H1−Y/2(ΩR) ←↩ HY/2
0 (ΩR). As a con-

sequence it holds
|a(u, v)| ≤ C‖u‖HY/2(ΩR)‖v‖HY/2(ΩR), (4.20)

i.e., the bilinear form a(·, ·) is continuous on V × V with V = H
Y/2
0 (ΩR).

If Y ∈ [0, 1), the operator ∂τ+Ajump is, in general, of hyperbolic type. If Y = 1, its formal type
is neither parabolic nor hyperbolic. If σ = 0 and Y < 1 discontinuous wavelet approximations
are admissible and the advection term ∂xu can be stably discretized by an upwinding Finite
Volume Method (FVM).

Remark 4.5 For Y < 0, i.e. for finite intensity jump processes, compression to O(N logN)
can not be accomplished with the wavelets shown in Figure 1. In this case, discontinuous
wavelets with more vanishing moments than (4.7) allow once more compression to O(N logN)
entries while preserving full accuracy of the scheme.

Remark 4.6 We considered only piecewise linear wavelets of degree p = 1. Results analogous
to Proposition 4.1 are also available for wavelets of degree p > 1 and we refer to [34] for
details. We finally remark that a more refined criterion than (4.11) allows compression to
O(N) nonzero entries in certain cases while keeping (4.15).

Using ã in place of a in (4.21) gives the following sequence of perturbed matrix variational
ineqalities

(v − Ũm+1
N )>(M + kÃ)Ũ

m+1
N ≥ (v − Ũm+1

N )>(kF + MŨ
m
N ) ∀ ∈ v ∈ K0. (4.21)

Proposition 4.1 indicates that as the mesh is refined the prices obtained from (4.21) stay close
to those obtained by solving (4.6).

5 Solution Algorithm

The matrix variational inequality (4.21) requires the solution of a linear complementarity
problem (LCP) in each time step. Standard methods like PSOR (projected SOR) [14] and
PSSOR (projected symmetrized SOR) are not suitable, since these methods are preferred
when the matrix is symmetric or diagonally dominant. Unlike as in the BS case, in the Lévy
case symmetry of the matrix can not be achieved by transformations, since the Lévy densities
have in general asymmetric tails.
Our solution algorithm is described first in a general framework, since it is also applicable to
other models as e.g. BS models with stochastic volatility. It relies on a fixed point (outer)
iteration where in each step a projection onto the convex cone K0 has to be realized (inner
iteration). Owing to the norm equivalence (4.9) of the wavelet basis, the outer fixed point
iteration applied to (4.21) converges at a rate independent of the dimension N of the FE dis-
cretization. In each outer iteration, one must realize the H1(ΩR) (or an equivalent) projection
PK0

onto K0. We realize this projection based on a wavelet generalization of the classical Cryer
algorithm [14].
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5.1 Outer iteration

5.1.1 Fixed point iteration

We describe an iterative solution algorithm for an abstract elliptic variational inequality set
in a Hilbert space (V, (·, ·)V). Let ‖ · ‖V denote the corresponding norm (‖v‖V = (v, v)1/2V ) and
let K ⊂ V be a closed, convex cone in V. Without loss of generality it can be assumed that
0 ∈ K. Let u ∈ K be the solution of the following variational inequality

Find u ∈ K : b(u, v − u) ≥ l(v − u) ∀ v ∈ K. (5.1)

The bilinear form b : V × V → R is assumed continous and coercive and the linear form
l : V → R is continuous with respect to ‖ · ‖V , i.e. there exist constants C > 0 and α > 0 such
that for all v, w ∈ V

b(v, v) ≥ α‖v‖2V , |b(v, w)| ≤ C‖v‖V‖w‖V , |l(v)| ≤ C‖v‖V .

Let 〈·, ·〉V be an inner product on V equivalent to (·, ·)V . Since for each v ∈ V it holds that
b(v, ·) ∈ V∗, Riesz’ theorem applies and there exists B : V → V∗ and bl ∈ V such that

b(v, w) = 〈Bv,w〉V , l(v) = 〈bl, v〉V ∀ v, w ∈ V.

The variational inequality (5.1) translates into

Find u ∈ K : 〈Bu, v − u〉V ≥ 〈bl, v − u〉V ∀ v ∈ K. (5.2)

Denote by ||| · |||V the norm corresponding to 〈·, ·〉V . By our assumptions on b(·, ·), there are
C1 > 0, C2 > 0 such that for all v, w ∈ V it holds

|〈Bv,w〉V | ≤ C1|||v|||V |||w|||V , 〈Bv, v〉V ≥ C2|||v|||2V . (5.3)

Let us denote by PK the 〈·, ·〉V projection onto the convex set K. Solving (5.2) is equivalent to
solving the fix-point problem [29]

u = Su := PK(u− ρ(Bu− bl)), ρ > 0 (5.4)

We solve (5.4) iteratively:

Given u0 ∈ V define un+1 := PK(un − ρ(Bun − bl)) ∀n ≥ 0.

Then un → u as n→∞ provided that 0 < ρ < 2C2/(C1)2, since in this range of ρ the operator
S is non-expanding. The optimal choice is ρopt = C2/(C1)2, for which |||Su1 − Su2|||V ≤
q|||u1 − u2|||V , with q := 1 − (C2)2/(C1)2 < 1. Note that the rate of convergence of the
fix-point iteration depends only on the constants C1, C2 in (5.3)

5.1.2 Discretization

We apply the fix-point iteration (5.4) to b(·, ·) = (·, ·)L2(ΩR) + kã(·, ·). For clarity of exposition
we continue with the description of the FE discretization of (5.1) in the abstract framework of
the previous section and explain in Section 5.1.3 how this applies to (4.1)–(4.2).

Let VN = Span {Φi}Ni=1 ⊂ V be a finite dimensional subspace of V of dimension dimVN = N .
Let KN := K ∩ VN and let uN be the solution of the following variational inequality

Find uN ∈ KN : 〈BuN , v − uN 〉V ≥ 〈bl, v − uN 〉V ∀ v ∈ KN . (5.5)
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Again, (5.5) is equivalent to the following fix-point interation

Given u0,N ∈ VN define un+1,N := PKN
(un,N − ρ(Bun,N − bl)) ∀n ≥ 0 (5.6)

where PKN
denotes here the 〈·, ·〉V projection onto KN

Given v ∈ V, find PKN
v ∈ KN such that 〈PKN

v, w − v〉V ≥ 〈v, w − v〉V ∀w ∈ KN .

Let H denote the ‘mass’ matrix of 〈·, ·〉V in the basis B, B the ‘stiffness’ matrix of the bilinear
form b(·, ·) w.r. to B and l the ‘load’ vector, i.e.

Hi,j := 〈Φj ,Φi〉V , Bi,j = b(Φj ,Φi), li = l(Φi) 1 ≤ i, j ≤ N.

The fix-point iteration (5.6) is equivalent to:
Find un+1 ∈ KN := {v ∈ RN : v :=

∑N
i=1 viΦi ∈ KN} such that

u>n+1H(v − un+1) ≥ (Hun − ρ(Bun − l))>(v − un+1) ∀ v ∈ KN , (5.7)

where v is the coefficient vector of v with respect to the basis {Φi}Ni=1.
Let us denote by (·, ·)H the scalar product (v, w)H = v>Hw induced by the matrix H. Then
(5.7) can be written as:
Find un+1 ∈ KN such that

(un+1, v − un+1)H ≥ (Hun − ρ(Bun − l))>(v − un+1) ∀ v ∈ KN (5.8)

which is the fixed point iteration applied to the bilinear form bN (·, ·) : RN ×RN → R and the
linear form lN : RN → R given by

bN (v, w) = v>Bw, lN (v) = v>l.

The constants C1,N , C2,N that enter into the choice of the relaxation parameter 0 < ρ <
2C2,N/(C1,N )2 and that determine the rate of convergence of the fix-point iteration (5.8) are
‖H−1/2BH−1/2‖2 and λmin((H−1/2(B + B>)H−1/2).

5.1.3 Application to (4.1)–(4.2)

The choice of the equivalent inner product 〈·, ·〉V and of the matrix H in (5.8) will be used for
preconditioning the fixed point iteration.
Denote by AE := M + kÃ. For a standard finite element basis and σ 6= 0, AE has a condition
number of order h−2 for small h and fixed k. For the matrix AE in wavelet basis one can
achieve uniformly bounded condition number.

Proposition 5.1 Assume that 0 ≤ Y < 2 and fix κ in (4.13) sufficiently large, but independent
of L. Then the quantities

‖ÂE‖2 := ‖(HE)−1/2AE(HE)−1/2‖2, λmin((HE)−1/2(AE + (AE)>)(HE)−1/2) (5.9)

where HE is a diagonal matrix with entries HE
(j,l),(j,l) = 1 + k22l, are bounded from above and

below, respectively, in L and k. In particular, the fixed point iteration (5.8) with B = AE and
H = HE converges with rate q < 1 independent of k and L.
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Proof. Define ÂE := (HE)−1/2AE(HE)−1/2. By the norm equivalences (4.9) and the consis-
tency condition (4.13) for sufficiently large κ in (4.12) it holds

C1‖x‖2`2 ≤ x
>Mx, x>My ≤ C2‖x‖`2‖y‖`2

C3‖Dx‖2`2 ≤ x
>Ãx, x>Ãy ≤ C4‖Dx‖`2‖Dy‖`2

with D being the diagonal matrix with entriesD(j,l),(j,l) = 2l and with constants Cj independent
of L. It follows that there exist some constants C5 and C6 > 0 independent of L such that

C5x
>(I + kD)x ≤ x>ÂEx

x>ÂEy ≤ C6[‖x‖`2‖y‖`2 + k‖Dx‖`2‖Dy‖`2 ] ≤ C6‖(I + kD)x‖`2‖(I + kD)y‖`2

which completes the proof.

The fix-point iteration (5.8) applied to (4.3)–(4.4) reads:

For m = 0, 1, . . . , T/M − 1 do:

For n = 0, 1, 2, . . . until convergence:

Find Um+1
n+1,N ∈ K0 such that

Um+1
n+1,N

>
HE(v−Um+1

n+1,N ) ≥ (HEUm+1
n,N −ρA

EUm+1
n,N +ρ(MUmN+kF ))>(v−Um+1

n+1,N ) ∀ v ∈ K0

Next n

Set Um+1
N := Um+1

n,N

Next m

L \ ρ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
6 31 28 25 23 20 18 17 15 14 15 18 20 24
7 31 28 25 23 20 18 17 15 14 15 18 20 24
8 32 28 25 24 22 20 19 17 17 17 18 25 24
9 29 34 28 28 26 22 20 22 17 20 24 33 28

Table 1: Performance of the outer fix point iteration for σ = 0.2. The CGMY parameters are
C = 1.0, G = 1.4, M = 2.5 and Y = 1.4.

Remark 5.2 In the pure jump case, i.e., when σ = 0, and for Y ∈ (1, 2) the bilinear form is
continuous on H

Y/2
0 (ΩR) × HY/2

0 (ΩR) and satisfies the G
◦
arding inequality (4.16), see also

Proposition 4.3 and Remark 4.4. By the norm equivalences (4.9) we define in this case HE as
being the diagonal matrix with entries HE

(j,l),(j,l) = 1 + k2Y l and the proof of Proposition 5.1
holds verbatim. When Y ∈ [0, 1] we applied the same numerical scheme and the perfomance of
our solution algorithm turns out to be the same as reported for the case when σ > 0 or σ = 0
and Y ∈ (1, 2).
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L \ ρ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
6 24 21 19 17 16 16 13 13 13 12 15 19 23
7 28 25 23 21 19 18 17 16 17 20 26 33 45
8 30 27 24 23 22 20 19 18 22 27 32 40 59
9 32 28 27 26 22 21 20 20 26 31 41 55 83

Table 2: Performance of the outer fix point iteration for a pure jump Lévy process, i.e. σ = 0.0.
The CGMY parameters are C = 1.0, G = 8.8, M = 9.2 and Y = 1.6.

In Table 1 we study the rate of convergence of the outer iteration in dependence on ρ and L
(the level of the FE discretization). More precisely, for a fixed time t = 0.5 and a fixed time
step k = 0.01 we count the number n of outer iterations needed for ‖Un+1,N −Un,N‖HE to fall
below a given tolerance tol = 10−8. The diffusion coefficient σ is in this case σ = 0.2 and the
HE projection corresponds, by the wavelet norm equivalences to the H1 projection onto the
convex cone of admissible solutions K0

In Table 2 we repeat this experiment for a pure jump process (i.e. σ = 0) with Y = 1.6. The
diagonal matrix HE is now given by HE

(j,l),(j,l) = 1 + k2Y l, i.e. does not correspond to the
Laplace matrix anymore. We observe that the number of outer iterations for e.g. ρ = 1.0 is
independent of σ and of the choice of the discretization level parameter L.

5.2 Realization of PK

It remains to solve the variational inequality (5.7). Note that HE is symmetric and, if the
diagonal wavelet preconditioner is used, possibly diagonal. To realize the HE projection onto
the convex cone K0 we use a generalization of the Cryer algorithm [14].

5.2.1 Generalized Cryer algorithm

Let H ∈ lRN×N be any symmetric positive definite matrix and let C ∈ lRN×N be any invertible
matrix. Specific choices of H and C will be given below. Consider the minimization problem

min
u
u>Hu− 2f>u subject to Cu ≥ 0 element-wise, (5.10)

which corresponds to the LCP

Find u ∈ RN such that Cu ≥ 0

C−>(Hu− f) ≥ 0

u>(Hu− f) = 0.

We use the following

Algorithm 5.3 Choose ω ∈ (0, 2). Set si := C−1ei, i = 1, . . . , N .
0) Choose a starting vector u0 with Cu0 ≥ 0.
1) For k = 1, . . . do (until convergence):

1.1) Set uk0 := uk−1.
1.2) For i = 1, . . . , N do:

1.2.1) Set rki = (s>i Hsi)−1s>i
[
f −Huki−1

]
si.

1.2.2) Choose the maximal ω̃ki with ω̃ki ≤ ω, such that C(uki−1 + ω̃ki r
k
i ) ≥ 0.
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1.2.3) Set uki = uki−1 + ω̃ki r
k
i .

1.3) Next i.
1.4) Set uk := ukN .

2) Next k.

Lemma 5.4 Under the above assumptions, the algorithm converges to the solution of (5.10).

Proof. Let G(u) = u>Hu− 2f>u. Using symmetry of H, one has

G(u)−G(v) = (u− v)>H(u− v) + 2(u− v)>(Hv − f).

With

(rki )
>(Huki−1 − f) = −s

>
i Hsi
s>i si

(rki )
>rki ,

we get

G(uki )−G(uki−1) = (ω̃ki )
2(rki )

>Hrki − 2ω̃ki
s>i Hsi
s>i si

(rki )
>rki . (5.11)

Since rki is a multiple of si, equation (5.11) reads

G(uki )−G(uki−1) = −ω̃ki (2− ω̃ki )(rki )>Hrki ≤ 0,

the last inequality due to ω̃ki ∈ [0, ω] ⊂ [0, 2).
Hence, the sequence {G(uki )} is monotonically decreasing. By positivity of H, G is strictly
convex and bounded below. It follows, that G(uki )→ G from above.
Using

(rki )
>Hrki =

1
(ω̃ki )2

(uki − uki−1)
>H(uki − uki−1)

in case ω̃ki 6= 0, we infer

G(uki )−G(uki−1) ≤
(

1− 2
ω

)
(uki − uki−1)

>H(uki − uki−1) ≤ −c‖uki − uki−1‖2

with some c > 0, i. e.
‖uki − uki−1‖2 ≤ C

[
G(uki−1)−G(uki )

]
.

Hence, uki converges as well, say, to u ∈ RN . By continuity of the algorithm, u is a fixed point.
It remains to show, that u solves the minimization problem (5.10).
Let

K = {u ∈ RN : Cu ≥ 0}.

The constraint set K is the mapped positive orthant K0 = {u ∈ RN : u ≥ 0}, i.e. K = C−1K0.
Let x ∈ RN and let hi, i = 1, . . . , n, be a set of directions. If G′(x)hi, the directional derivative
of G at x in the direction hi, is non-negative for all i = 1, . . . , n, then for every set of non-
negative numbers αi, i = 1, . . . , n, it holds G(x +

∑
αihi) ≥ G(x), or, equivalently, x is the

minimizer of G over the cone spanned by the directions hi. To see this, set h :=
∑
αihi and

note, that by linearity of G′ we have G′(x)h ≥ 0. Taking into account that G, restricted to
the line {x+ αh, α ∈ R}, is a convex funtion in α, the claim follows.
Now the assertion, that u is the solution to (5.10), easily follows. We call a direction d ∈ RN

pointing outwards of K at x, if for every ε > 0 the point x + εd 6∈ K. (Note, that for x ∈ K
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by convexity of K the fact x+ ε0d 6∈ K implies x+ εd 6∈ K for every ε ≥ ε0.)
Set S = {±si, i = 1, . . . , N} and consider the set

S(u) := {s ∈ S : s is not pointing outwards of K at u}.

For s ∈ S(u) by stationarity of the algorithm, it holds G′(u)s ≥ 0. On the other hand, the
convex cone CS(u) generated by S(u) satisfies

K ⊂ CS(u).

By the above reasoning, u is the minimizer of G over CS(u), and therefore the minimizer of
G over K.

There seem to be no convergence rates available for Cryer’s algorithm. Multilevel techniques
[27] promise an O(N log(N)) efficiency, but in the parabolic examples considered below, the
direct application of Cryer’s algorithm turned out to be superior, since the initial values taken
from the previous steps are very close to the respective solutions. In our experiments, the
number of inner iterations was usually of the same size as the number of iterations in the outer
(Stampacchia) iteration.

6 Numerical Results

We present in this section extensive numerical experiments to illustrate the flexibility of our
code with respect to the choice of the price process parameters and of the discretization pa-
rameters. In all experiments below the level L for the wavelet resolution is L = 11.
In the first example shown on Figure 3 we take K = 500, T = 0.5, r = 0.4, σ = 0.2 and the
following CGMY parameters: C = 1, G = 1.4, M = 2.5 and Y = 1.4. We compare the value
of the American put option with that of the European one for the same set of parameters. The
early exercise boundary of the American contract is plotted on the right.
In Figure 4 we display the prices of American put options with respect to different time horizons
T = 0.1, 0.25, 0.5. The price process is a pure jump CGMY Lévy process with parameters
C = 1.0, G = 8.8, M = 9.2 and Y = 1.6. In Figure 5 we take VG as price process, i.e., σ = 0.0
and Y = 0.0.
In [10] it is shown that in the case of perpetual American put, i.e., for T =∞ (equivalently, for
the stationary variant of (3.4)–(3.7)), the principle of smooth fit may fail in the case of infinite
intensity pure jump Lévy processes. From the results of [10] it follows in particular that for
the family of CGMY Lévy processes, the principle of smooth fit may fail if Y ∈ (0, 1), but also
that the smooth fit condition always holds for Y ∈ [1, 2). We emphasize that we do not rely
on the principle of smooth fit within our numerical scheme. Our numerical experiments also
reveal that in the case Y ∈ [1, 2) the smooth fit condition appears to hold (see Figures 3, 4)
whereas it fails for the case of the VG process in Figure 5.
Studying sensitivity of prices with respect to parameters is of great importance and we illustrate
this feature in Figure 6, where we fix all parameters except Y and study how the exercise
boundary depends on Y .
Our last example concerns an American butterfly option. Its pay-off is given by

(S −K1)+ − 2(S − (K1 +K2)/2)+ + (S −K2)+

and is constructed by holding a long position in two calls with strikes at K1 and K2 and a
short position in two calls struck at (K1 +K2)/2. Note that the pay-off function is not convex
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anymore, a feature that is often exploited to speed up convergence of certain algorithms [7].
In [7] an algorithm for evaluating the American put option within the classical Black-Scholes
framework in linear computational complexity with respect to the number of grid points is
proposed. The method relies however on the monotonicity of the exercise boundary and on
the band structure of the matrix of the LCP. We emphasize that our implementation does not
rely on any topological assumption on the free boundary as e.g., graph-like and monotone. We
plot in Figure 7 the option value of an American butterfly option with K1 = 3 and K2 = 10
and the early exercise boundary for this case.
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Figure 3: American vs. European and the exercise boundary
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Figure 4: American Put option values for different maturities and for a pure jump Lévy process
of CGMY type with C = 1.0, G = 8.8, M = 9.2 and Y = 1.6.

A Proof of Theorem 3.4

Here, we give the proof of Theorem 3.4. We split the bilinear form aη into the following
expressions

aη = aη1 + aη2 + aη3
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Figure 5: Failure of the smooth pasting condition for VG as price process.
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Figure 6: Sensitivity of the exercise boundary with respect to parameter Y in the CGMY
model.

where

aη1(ϕ, φ) =
σ2

2

∫
R

dϕ
dx

(x)
dφ
dx

(x)e2η(x)dx− r
∫

R

(
dϕ
dx

(x)− ϕ(x)
)
φ(x)e2η(x)dx

+
∫

R

dϕ
dx

(x)φ(x)
(
σ2

2

(
2
dη
dx

(x) + 1
)

+
∫

R

(
ey − 1− yχ{|y|≤1}(y)k(y)dy

))
e2η(x)dx

aη2(ϕ, φ) = −
∫

R

∫
R

∫ 1

0
dθ

dϕ
dx

(x+ θy)φ(x)e2η(x)yχ{|y|≥1}(y)k(y)dydx

aη3(ϕ, φ) = −
∫

R

∫
R

∫ 1

0
dθ
∫ θ

0
dθ′

d2ϕ

dx2
(x+ θ′y)y2φ(x)e2η(x)χ{|y|≤1}(y)k(y)dydx.
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Figure 7: American butterfly

Clearly, for all ϕ, φ ∈ H1
η (R) it holds

|aη1(ϕ, φ)| ≤ C(‖η′‖L∞(R))
∥∥∥∥dϕ

dx

∥∥∥∥
L2

η(R)

∥∥∥∥dφ
dx

∥∥∥∥
L2

η(R)

aη1(ϕ,ϕ) ≥ σ2

2

∥∥∥∥dϕ
dx

∥∥∥∥2

L2
η(R)

+ r‖ϕ‖2L2
η(R)

−
(
σ2

2
(
2‖η′‖L∞(R) + 1

)
+
∣∣∣∣∫

R
ey − 1− yχ{|y|≤1}(y)k(y)dy

∣∣∣∣ ) ∥∥∥∥dϕ
dx

∥∥∥∥
L2

η(R)

‖ϕ‖L2
η(R).

If we insert eη(x+θy)e−η(x+θy) in the definition of aη2 and use the hypothesis on the weighting
exponent η we obtain that

|aη2(ϕ, φ)| ≤ C
∥∥∥∥dϕ

dx

∥∥∥∥
L2

η(R)

‖φ‖L2
η(R).

The remaining part aη3 needs a more careful inspection. It can be shown that for any ε > 0
there exists a constant C(ε) > 0 such that

|aη3(ϕ, φ)| ≤ ε
∥∥∥∥dϕ

dx

∥∥∥∥
L2

η(R)

∥∥∥∥dφ
dx

∥∥∥∥
L2

η(R)

+ C(ε)
∥∥∥∥dϕ

dx

∥∥∥∥
L2

η(R)

‖φ‖L2
η(R). (A.1)

To prove (A.1) we write aη3(ϕ, φ) in the following form

aη3(ϕ, φ) =∫
R

∫
R

∫ 1

0
dθ
∫ θ

0
dθ′

dϕ
dx

(x+ θ′y)
(

dφ
dx

(x) + 2η′(x)φ(x)
)
e2η(x)y2χ{|y|≤δ}(y)k(y)dydx

−
∫

R

∫
R

∫ 1

0
dθ

dϕ
dx

(x+ θy)eη(x+θy)φ(x)eη(x)e−η(x+θy)+η(x)yχ{δ≤|y|≤1}(y)k(y)dydx

+
∫

R

∫
R

dϕ
dx

(x)φ(x)e2η(x)yχ{δ≤|y|≤1}(y)k(y)dydx.

Since
∫
{|y|≤1} y

2k(y)dy < +∞, given ε > 0, one can choose δ = δ(ε) sufficiently small such that
(A.1) holds.
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