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1 Model Risk: our approach

Equilibrium or (absence of) arbitrage models, but also portfolio management
applications and risk management procedures developed in �nancial institu-
tions, are based on a range of hypotheses aimed at describing the market
setting, the agents risk appetites and the investment opportunity set. When
it comes to develop or implement a model, one always has to make a trade-o�
between realism and tractability. Thus, practical applications are based on
mathematical models and generally involve simplifying assumptions which
may cause the models to diverge from reality. Financial modelling thus in-
evitably carries its own risks that are distinct from traditional risk factors
such as interest rate, exchange rate, credit or liquidity risks.

For instance, suppose that a French trader is interested in hedging a Swiss
franc denominated interest rate book of derivatives. Should he/she rely on
an arbitrage or an equilibrium asset pricing model to hedge this book? Let us
assume that he/she chooses to rely on an arbitrage-free model, he/she then
needs to specify the number of factors that drive the Swiss term structure
of interest rates, then choose the modelling stochastic process, and �nally
estimate the parameters required to use the model.
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In order to characterize the random evolution of the term structure of
interest rates, models with one-factor, generally chosen as the short term
rate, have been developped because they are easy to implement (see, e.g.,
Merton [21] , Vasicek [25], Cox, Ingersoll and Ross [10], Hull and White [17],
etc.), even if most empirical studies using a principal component analysis
have decomposed the motion of the interest rate term structure into three
independent and non-correlated factors, which respectively capture the level
shift in the term structure, the twist in opposite direction of short and long
term rates, and the butter�y factor that captures the fact that the inter-
mediate rate moves in the opposite direction of the short and the long term
rates. The multi-factor models do signi�cantly better than single-factor mod-
els in explaining the dynamics and the shape of the entire term structure,
but the latter provide analytical expressions for the prices of simple interest
rates contingent claims, whereas a multi-factor model generally leads to nu-
merically or quasi analytically solve partial di�erential equations in a higher
dimension to obtain prices and hedge ratios for the interest rate-contingent
claims.

The factor(s) dynamics speci�cation is another source of Model Risk. The
dynamics speci�cations cover a large spectrum of distributional assumptions
such as pure di�usion processes or mixed jump-di�usion processes. The
stochastic processes can have time-varying or constant drift and/or volatility
parameters and they can rely on a linear or a non-linear speci�cation of the
drift (see Ait- Sahalia [3])

Once the model is �xed, one has to estimate its parameters. This step
does not really provide help to verify the adequacy of the model on past
data, since the theory of parameter estimation generally assumes that the
true model belongs to a parametrized family of models. Moreover, a mis-
speci�ed model does not necessarily provide a bad �t to the data.

A study by Jacquier and Jarrow [18] proposes to incorporate model error
and parameter uncertainty into a new method of contingent claims mod-
els' implementation. Using Markov Chains, Monte Carlo estimators, their
conclusion, for a single stock option case study, suggests that the pricing
performance of the "extended" Black and Scholes model dominates the sim-
ple Black and Scholes model within but not out-of-sample. Usually, the
model parameters must be estimated by �tting a given set of market data.
However, in �nance it has been proved that natural estimators such as max-
imum likelihood and generalized method of moments estimators applied to
time-series of interest rates may require a very large observation period to
converge towards the true parameter values, yet it seems highly unrealis-
tic to assume constant parameters over such a long period, see, Fournié &
Talay [13]. Another important problem arises from the time discretization
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when we numerically compute the statistical estimates of the parameters of
a stochastic model.

All the sources of Model Risk we have just listed, have strong �nancial
repercussions (losses incurred by a bank or a �nancial institution due to
Model Risk are fairly common) on the pricing, hedging, risk management
and the de�nition of regulatory capital adequacy rules.

As far as derivatives pricing/hedging is concerned, a large part of the lit-
erature relies on the assumption of absence of arbitrage opportunities since
the seminal articles of Black and Scholes [8] and Merton [21]. The principle
is simple: given a distribution on a primitive asset price (for a stock, a bond,
or a commodity), if we make the simpli�ed hypothesis that there are no fric-
tions and that the risk structure is not too complex, one can show that the
derivative cash-�ows can be replicated by a dynamic trading strategy involv-
ing the primitive assets. The Absence of Arbitrage hypothesis stipulates that
the price of the derivative should be the same as the price of the replicating
portfolio or there would be arbitrage pro�ts (free lunches) in the market.

However, in this framework the pricing or hedging performance is not
independent of the model used for the underlying asset price. One important
problem is that the pricing models are often derived under a perfect and
complete market paradigm, whereas markets are actually incomplete and
imperfect. Violations of the perfect market assumption generally preclude us
from observing uniqueness of the asset's theoretical price, and we are often
left only with bounds to characterize transaction prices. In an interesting
study focusing on equity options, Green and Figlewski [15] thus explain why
option writers will charge a volatility mark-up to protect their Pro�t and
Loss against Model Risk.

The presence of Model Risk will also a�ect the performance of model
based hedging strategies.

In a continuous-time and frictionless market, a market maker, for ex-
ample, the seller of an option, can synthetically create an opposite position
(called delta-hedging strategy) which eliminates his/her risk completely. If
the hedger uses an alternative (wrong) option pricing model, his/her price
for the option di�ers from the true (market) price and provide an incorrect
hedge ratio. In the presence of Model Risk, even though we assume fric-
tionless markets, the self-�nancing delta-hedging strategy does not replicate
the �nal pay-o� of the option position. Bossy and al. [9] study the case of
bond option hedging, the Model Risk is de�ned by the Pro�t and Loss of the
seller of an option who believes that the true model is one of the univariate
Markov models nested in the Heath-Jarrow-Morton [16] framework, whereas
the true model is actually another model belonging to the same class. In a
subsequent study, Akgun [4] extends the methodology developed by Bossy
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et al. [9] to include omitted jumps by the trader who uses the wrong pure
di�usion univariate term structure model to hedge his derivatives exposure.
In his setting, the jumps are driven by a �nite state-space compound Poisson
process. This in turn allows him to show that omitting jump risk can be
fairly devastating, as evidenced by simulated forward Model Risk Pro�l and
Loss probability distributions, especially when shorting in and at-the-money
naked or spread option positions.

Indeed, it is important for regulators to measure the trading and the
banking books interest-rate risk exposures correctly. The Basle Committee
on Banking Supervision [1], [2] issued directives to help �nancial institutions
evaluate the interest-rate risk exposures of their exchange traded and over-
the-counter derivative activities, as well as for their on and o�-balance sheet
items. Regulators ask the banks and other �nancial institutions to set aside
equity in order to cover market risk driven losses.

Proposition 6 of the Basle Committee Proposal [2] states that banks can
calculate their market risk capital requirements as a function of their fore-
casted ten-days-ahead value-at-risk. The value-at-risk (VaR) is de�ned as
the quantile at a 99% con�dence interval of the distribution of the future
value of the considered activity. The aim is to estimate the potential loss
that would not be exceeded with a 99% probability over the next ten trading
days. An important source of Model Risk arises from the approximation tech-
niques that a bank adopts to incorporate non-linear payo� securities in the
VaR model. Pritzker [22] investigates the trade-o� between accuracy and the
computational time for six alternative VaR computation methods. Among
them, the delta-gamma Monte Carlo method provides the best trade-o� but
still leads to signi�cant errors in the VaR �gures, especially for deeply out of
the money options. Under these directives, banks are allowed to apply their
own internal risk measurement models to calculate the VaR which will in
turn determine their regulatory capital charge. No particular type of model
is prescribed, as long as the internal model captures the relevant market risks
run by a �nancial institution.

Even if internal models are allowed, regulators have introduced a back-
testing procedure to assess the accuracy of a given VaR model and penalties
in the form of multipliers: the market risk capital charge is computed using
the bank's own estimate of the value-at-risk, times a multiplier whose value
depends on the number of exceptions over the last 250 days detected with the
help of the back-testing procedure. The regulator has �xed the value of the
multiplier between 3 and 4 in order to keep a security margin against possible
model errors made in the computation of the VaR. Lopez [20] compares three
commonly used back-testing procedures and shows that they all have very
low power against alternative VaR models. Thus, even at the �nal stages of
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model assessment and compliance, the accuracy detection method can induce
regulatory `Model Risk and thus lead to over or under-capitalized �nancial
institutions'.

Specifying a proper loss function to assess a model's accuracy is thus
a �rst step to mitigate Model Risk. This loss function should depend on
the speci�c applications associated with the model and be adapted to the
time-horizon and the contractual features of the positions being valued or
hedged, to the division and/or the responsibility levels involved (trading desk
versus senior management), without leading to excessive risk taking behavior
especially below the critical downside risk thresholds. The methodology of
Bossy and al. [9] can be used to measure the risk implied by the choice of
an erroneous univariate term structure model. It measures the distribution
of the losses due to this error, including (but not reduced to) estimation
errors. It also takes into account hedging errors in addition to pricing errors
(that can be avoided by the calibration of a wrong model on true market
data). This methodology is brie�y discussed in Section 2.1 below. Quantile
approximation from Talay and Zheng [24] is presented at the end of Section
2.

This methodology is however restricted to the comparison of one (poten-
tially incorrect) model against one or several (possible true) models among a
class of univariate Markov term structure models. This class does not contain
all possible term structures models. We present a more general methodology
and the results developed by Talay and Zheng [23] which aim at selecting a
hedging strategy which minimizes the expected utility of the Loss due his/her
model risk under the worst possible movements of nature (as characterized
by forward rates' volatility trajectories). This methodology is discussed in
Section 3.

This article is a synthesis of the following articles: Gibson, Lhabitant,
Pistre and Talay [14], Bossy, Gibson, Lhabitant, Pistre and Talay [9], Talay
and Zheng [23], [24]. Of course, our �nancial and numerical methodologies
can easily be extended to a wide family of cases: European options with
Black and Scholes type models, markets with transaction costs, etc.

2 Model Risk measurement

We brie�y recall the expression of the Pro�t and Loss obtained in Bossy et
al. [9] for a trader who believes in a term structure model of the univariate
Markov Heath-Jarrow-Morton family whereas the true term structure fol-
lows another model model in the same family. In reality the `true' model is
unknown. Thus one must consider this Model Risk analysis as being per-
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formed with respect to `benchmark' models selected by the investor, the risk
controller or the regulator.

2.1 Expression of the Pro�t and Loss in the Heath-

Jarrow-Morton model

We are given a probability space (
;F ;P ) equipped with the augmented
�ltration (Ft); t 2 [0; T ] generated by a real valued Brownian Motion (Wt; t 2
[0; T ]). We suppose that the yield curve of the �nancial market follows the
Heath-Jarrow-Morton model and, as here our analysis is focused on volatility
Model Risk, we also suppose that the premium risk process (�t) is null, thus
we have: for all time T �, the instantaneous forward rate f(t; T �) solves the
stochastic di�erential equation

f(t; T �) = f(0; T �) +

Z t

0

�(s; T �)��(s; T �)ds+

Z t

0

�(s; T �)dWs; (1)

with

��(s; T �) :=

Z T �

s

�(s; u)du:

In Bossy et al. [9], the Model Risk analysis is based on Monte Carlo
simulations of the Pro�t and Losses of the self-�nancing strategies of a trader
who aims at hedging a European option written on a bond of maturity TO.
In this subsection we give an outline of the method for the case where the
function � is deterministic.

Suppose that the trader does not know the map �(s; T ). Instead, he or
she chooses a deterministic model structure �(s; T ) and tries to hedge the
contingent claim according to this model.

Let V t be the value of the trader's portfolio at time t and Vt be the
value of the perfectly hedging portfolio. The option seller's Pro�t and Loss
is de�ned by:

P&Lt := V t � Vt:

Given a price Pt, de�ne the forward price P F
t by

P F
t :=

Pt
B(t; TO)

;

where B(t; TO) is the price of the bond of maturity TO in the model driven
by �(t; TO).

It can be shown that the self �nancing constraint implies that

d �V F
t =

@��
@x

(t; BF (t; T ))dBF (t; T ); (2)

6



where BF (t; T ) is the forward price of the discount bond, and that the forward
Pro�t and Loss P&LF

t satis�es

P&LF
t = V

F

0 � ��(0; B
F (0; T ))

+ ��(t; B
F (t; T ))� ��(t; B

F (t; T ))

+
1

2

Z t

0

@2��
@x2

(s; BF (s; T ))BF (s; T )2

f(��(t; TO)� ��(t; T ))2 � (��(t; TO)� ��(t; T ))2gds;

(3)

where �� is the solution to the following parabolic PDE parametered by the
function �:8<

:
@��(t; x)

@t
+

1

2
x2(��(t; T )� ��(t; T �))2

@2��(t; x)

@x2
= 0;

��(T; x) = �(x):
(4)

Thus the gamma of the position is shown to be essentially in the quantity of
Model Risk induced by the position of the trader. This means that limiting
the Model Risk of a trader implies limiting the gamma of the position, and
that the Model Risk exposure of an option position is not similar to its
interest rate exposure and thus has to be managed seperately.

As justi�ed by Artzner and al.[5], quantiles of the negative part of P&LTO ,
E [U(P&LTO )] where U is a utility function, are good candidates of Model
Risk measurements. Bossy et al. [9] discuss numerical results obtained by
Monte Carlo methods for simple and agregate strategies. In our next subsec-
tion we analyse the accuracy of such Monte Carlo methods. As the process
(BF (t; T ); P&LF

t ) is the solution of a stochastic di�erential equation (see
Equation (7) below), we focus our attention to the accuracy of the Monte
Carlo method to compute the quantiles of di�usion processes.

2.2 Quantile approximation of a di�usion process by

Monte Carlo methods

Given a random variable X and 0 < � < 1, the quantile of level � is the
smallest �(�) such that

P [X � �(�)] = �:

The case where X = XT , X� solution to a stochastic di�erential equation, is
of special interest for us.

Let (Xt) be a real valued process, solution to(
dXt = b(Xt)dt+ �(Xt)dWt;

X0 = x;
(5)
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where (Wt) is a r-dimensional Brownian motion.
The Euler scheme for (5) is

Xn
(p+1)T=n = Xn

pT=n + b(Xn
pT=n)

T

n
+ �(Xn

pT=n)(W(p+1)T=n �WpT=n):

De�ne �n(�) by
P [Xn

T � �n(�)] = �:

We suppose that (5) satis�es the same uniform hypoellipticity condition as in
Bally & Talay [7]. We do not rewrite here this technical hypothesis because
it requires too much material to be stated. We only emphasize that it can
be shown that this hypothesis is generally satis�ed for the equation (7).

Theorem 2.1. Under the above uniform hypoellipticity condition, there exist
strictly positive constants C(T ) and pXT

(�(�)) such that

j�(�)� �n(�)j � C(T )

qT (�)n
; 8n:

For the proof of Theorem 2.1, see Talay & Zheng [24]. The proof shows
that

qT (�) := inf
y2(�(�)�1;�(�)+1)

pXT
(y);

where pXT
is the density of the distribution of XT .

As classical estimates show that the standard deviation of the statistical
error of the Monte Carlo method, that is, the error due to the approxima-
tion of the expectation by the average over the simulations, is governed by
C(T )=(pXT

(�(�))
p
N), N being the number of simulations. To get estimates

on the discretization step and the number of simulations which are necessary
to obtain a desired accuracy with a given con�dence interval one needs an
accurate lower bound of the density of XT . For the strictly uniform elliptic
generators, see, e.g., Azencott [6]. In the degenerate case, under restrictive
assumption on b, see Kusuoka & Stroock [19]. Such assumptions are not
satis�ed in our Model Risk study, and therefore we need the supplementary
results of our next subsection.

2.3 Application to Model Risk

De�ne �� as the solution of the same parabolic problem as (4) with � instead
of �. Set 8>><

>>:
u1(t) := ��(t; TO);

u2(t) := (��(t; TO)� ��(t; T ));

'(t; x) :=
@��
@x

(t; x)� @��
@x

(t; x):

(6)
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Thus the forward price of the bond and the forward Pro�t and Loss P&LF
t

satisfy (
dBF (t; T ) = BF (t; T )u1(t)u2(t)dt +BF (t; T )u2(t)dWt;

dP&LF
t = '(t; BF (t; T ))dBF (t; T ):

(7)

We are interested in the quantile of P&LTO = P&LF
TO , that is

P [P&LTO � �(�)] = �:

We must �rst prove that P&LTO has a density, that is, the following Theo-
rem:

Theorem 2.2. Suppose that ju2(t)j � a > 0 for all t in [0; TO], u1(t), u2(t)
are bounded, and BF (0; T )'(0; BF (0; T )) 6= 0. Then the law of P&LTO has
a smooth density pTO. Moreover, pTO is strictly positive on its support.

For the proof, see Talay & Zheng [24].
In view of our comments for Theorem 2.1, it would be useful to obtain

an accurate pointwise lower bound estimate for pTO . This is done in Talay
& Zheng [24].

3 Model Risk management against worst case

volatility

The previous methodology is restricted to the comparison of the potentially
incorrect models against the potentially true (but unknown) or benchmark
models among a class of univariate Markov term structure models. The
following methodology is far more general, since it allows to optimize the
choice of the trader's strategy against `all' possible actual volatility processes.

3.1 Motivation

The objective is to propose a new strategy for the trader which, in a sense,
guarantees good performances whatever is the unknown process �(�; �). The
construction corresponds to a `worst case' worry and, in this sense, can be
viewed as a continuous time and rigorous extension of discrete time strategies
based upon prescriptions issued from VaR analyses at the beginning of each
period.

Roughly speaking, the idea can be expressed by the following graph:
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Trader = Minimizer of Risk.

Market = Maximizer of Risk.

Trader vs Market.

Thus the Model Risk control problem is set up as a two players (Trader
versus Market) zero-sum stochastic di�erential game problem. We notice
that our approach is related to, but di�erent from, Cvitanic and Karatzas
dynamic measure of risk(see [11]). Moreover, the solution at time 0 of our
stochastic game problem can be viewed as a `reserve position' for a �nancial
institution.

3.2 The stochastic di�erential game and the Hamilton

Jacobi Bellman Isaacs equation

Let (�t) be the delta process chosen by the trader. The self �nancing con-
straint implies that one has(

dBF (t; T ) = BF (t; T )u1(t)u2(t)dt+BF (t; T )u2(t)dWt;

dV
F
(t) = �(t)BF (t; T )u1(t)u2(t)dt+ �(t)BF (t; T )u2(t)dWt;

(8)

where u1(t) and u2(t) are de�ned as in (6).
We adopt the de�nition of admissible controls and strategies of Fleming

& Souganidis [12]. The set of all admissible controls for the market on [t; T ]
is denoted by Adu(t) and the set of all admissible strategies for the investor
on [t; T ] is denoted by Ad�(t). These admissible controls and strategies take
value in compact sets Ku and K� respectively.

For given � 2 Ad�(r) and u� 2 Adu(r), we de�ne the objective function
as

J(r; x; y;�; u�) := E r;x;y [F (f(BF (TO; T ))� V
F

TO)]

where F is a utility function and f is the pro�le of the payo� function 1. The
function F should be chosen according to the de�nition of measures of risk
introduced in Artzner et al. [5].

De�nition 3.1. The value function of the Model Risk control problem with
initial data (r; x; y) is de�ned by

V (r; x; y) := inf
�2Ad�(r)

sup
u:2Adu(r)

J(r; x; y;�; u:): (9)

1For the sake of simplicity our notation does not emphasize that the process

(BF (t; T ); V
F

t ) is parametered by (u1(t); u2(t); �t).
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We have the following result:

Theorem 3.2. Suppose that

jF (f(x)� y)� F (f(x)� y)j � P (jxj; jyj; jxj; jyj)(jx� xj+ jy � yj);

where P (jxj; jyj; jxj; jyj) is a polynomial function.
Then the semi-value function V (r; x; y) de�ned in (9) is the unique vis-

cosity solution in the space,

S := f'(t; x; y)is continuous; 9A > 0;

lim
x2+y2!1

'(t; x; y) exp(�Aj log(x2 + y2)j2) = 0; 8t 2 [0; TO]g

to the Hamilton-Jacobi-Bellman-Isaacs Equation,

8<
:
@v

@t
(t; x; y) +H�(D2v(t; x; y); Dv(t; x; y); t; x) = 0 in [0; TO)� R

2 ;

v(TO; x; y) = F (f(x)� y);

(10)
where

H�(A; p; t; x)

:= max
u2Ku

min
�2K�

�
1

2
u22x

2A11 + u22x
2�A12 +

1

2
u22x

2�2A22 + p1u1u2x+ p2u1u2�x

�
;

(11)

for all 2� 2 symmetric matrix A and all vector p in R
2 .

Moreover, V (r; x; y) satis�es the Dynamic Programming Principle, that
is,

V (r; x; y) = inf
�2Ad�(r)

sup
u:2Adu(r)

E r;x;y [V (t; xt; yt)]: (12)

For the proof, see Talay & Zheng [23].
The value function V (r; x; y) and the optimal strategy can be solved nu-

merically by the �nite di�erence method. In our numerical tests we consider
the Pro�t and Loss of the seller of a European call option. The utility func-
tion is

F (x) := (f(x)� y)+: (13)

The maturity TO of the option is 6 monthes and the option is written on a
discount bond of maturity T equal to 5 years. The trader uses two bonds to
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hedge this option: the bond of maturity 6 monthes and the bond of maturity
5 years. The strike of the option is K = 0:509156.

We set K� := [�c1; c1] = [�1; 1]. The constant c1 has been chosen after
having computed perfectlly replicating strategies in the cases of Ho�Lee and
Vasicek models. In addition, we �x u2 2 [0; c2] and u1 2 [�c3; c3] with
c2 = 0:6 and c3 = 0:07.

We comment Fig. 2. The graph of optimal strategy H�(t; x; y) consists
in three parts:

� When x (the forward price of the bond) is comparatively small with
respect to y (the forward price of the portfolio), then H(t; x; y) = 0. It
is a conservative strategy.

� When x is comparatively small with respect to y, H(t; x; y) = c1, the
maximum value. It is a risky strategy.

� In the other cases, H(t; x; y) takes values between 0 and c1. It is similar
to the classical hedging strategy.

Moreover, we observe from Fig. 3 that the optimal volatility u�2 is a bang-bang
control.
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Model Risk Problem: The value function corresponding to a call option
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Model Risk Problem: the trader’s optimal strategy for a call option

"optimal"
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Model Risk Problem: the market’s optimal control u2

"u2"
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Model Risk Problem: the market’s optimal control u1

"u1"

0

0.2

0.4

0.6

0.8

1

X-axis

0
0.2

0.4
0.6

0.8
1

Y-axis

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

F
igu

re
4:

T
h
e
O
p
tim

al
C
on
trol:

G
rap

h
of
u
�1 (0;x

;y
)

18


