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Abstract:

A very condensed overview of risk measurement methods is given and the di�erent
techniques are classi�ed. The risk measure \Value At Risk" (VAR) is presented from
a new point of view and a general de�nition of VAR is derived. Next, \Maximum
Loss" (ML) is formulated as a mathematical optimization problem and its modelling
is described.
The techniques for calculating ML for linear and quadratic risk pro�les are presented.
Some theoretical relations between VAR and ML are demonstrated: ML is presented as
a general framework including Delta{Normal VAR as well as Wilson's Delta{Gamma
approach. It is also proven that ML is a worst case measure which is always more
conservative than VAR.
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Chapter 1

Introduction

1.1 Problem Statement

One of the key issues of risk management is the measurement of market risk:
What is the chance of loss in the portfolio if the market rates move in an adverse
direction?
Mathematically, the setup of this problem can be formulated as follows: The
risk factors !1; : : : ; !M are translated market rates such that !i = 0 corresponds
to the actual value of market rate i. It is assumed that ! = (!1; : : : ; !M)

T are
stochastic variates of the random space 
, a connected set of IRM . The joint
density of ! is denoted by ft(!), where t is the holding period of the portfolio
(i.e., the time required to liquidate the portfolio).
The change in portfolio value | called \pro�t and loss" (P&L) | is denoted by
v(!); the above de�nitions imply that v(0) = 0.

1.2 Overview of Risk Measurement Techniques

Two fundamentally di�erent types of risk risk measurement techniques can be
distinguished:

Correlation Based Methods

These methods consider correlations between individual risk factors and produce
therefore a statistical netting e�ect (also called \aggregation"). Table 1.1 shows
a classi�cation of the common correlation based methods.

� If market rate innovations (e.g. absolute or relative di�erences of market
rates at two consecutive points in time) are not stable, the risk factors can-
not be modelled parametrically and scenario based simulation (e.g. using
historical scenarios) has to be applied.
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portfolio positions: portfolio positions:

all linear not all linear

Delta{Gamma VAR
market rates:

stable innovations
Delta{Normal VAR Monte{Carlo Simulation

stochastic model:

parametric
Maximum Loss Optimization

market rates:

non stable innovations
| Scenario Based Simulation

Table 1.1: Classi�cation of correlation based risk measurement techniques

� If the portfolio consists entirely of linear instruments and if the market
rates are normally distributed, then the Delta{Normal VAR (\RiskMetrics
method", described in [RiskMetrics]) is appropriate (cf. chapter 2.2).

� Several approaches exist for handling Gamma{risk in VAR calculations (cf.
chapter 2.2): Wilson's closed form Delta{Gamma method (cf. [Wilson2]),
as well as some proprietary techniques, �rst \linearizes" nonlinear instru-
ments by incorporating the convexity into the linear coe�cient, and then
calculates standard Delta{Normal VAR. The approach of [Schaefer] uses a
combination of chi{square distributions for estimating VAR.

� Parametric Monte{Carlo simulation can be used for estimating VAR of
nonlinear portfolios. Unfortunately, simulation techniques are very time
demanding. However, [Frauendorfer and K�onigsperger] suggest so{called
\downside{approximations", which promise considerable accelerations.

� Maximum Loss Optimization (cf. chapter 3) comprises non{simulation
based approaches to calculate nonlinear risks. One known representative of
this category is Wilson's numerical Delta{Gamma method (cf. [Wilson1]).

Non Correlation Based Methods

These methods ignore statistical correlations of risk factors and show therefore
no aggregation e�ect. Usually, these methods investigate the e�ects of prede�ned
scenarios:

� Factor Push method

� Stress Testing (cf. Appendix D)
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Chapter 2

Value At Risk

2.1 Concept of VAR

\Value At Risk" (cf. [Beckstr�om and Campbell]) is de�ned as:

The expected loss of a portfolio that will occur
� with probability �,
� over some time interval t.

Mathematically, VAR is the (1 � �){quantile of the P&L distribution, i.e., it
satis�es the relation:

Pr(v(!) � VAR) = 1� �; (2.1)

where we assume that the P&L distribution is a continuous and strictly monotone
function. A more general de�nition of VAR is given in Appendix B. The choice
of � usually neglects the distribution in the tails; this aspect is discussed in
[Embrechts]. In particular, an important question remains what value of � is a
suitable con�dence level.

2.2 Delta{Normal VAR

The most common method for calculating VAR is the so called Delta{Normal
method, used by RiskMetrics (cf. [RiskMetrics]). It is based on the following
assumptions (cf. Appendix A):

1. The change in portfolio{value depends linearly on the risk factors, i.e.,
v(!) =

PM
i=1 �i!i.

2. The risk factors are multinormal variates with mean 0 and covariance ma-
trix �t.
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These assumptions imply that P&L is normally distributed with mean 0 and
variance �T�t�, where � = (�1; : : : ; �M)

T . Hence, VAR is just a quantile of a
normal distributed variate (cf. �gure 2.1):

VAR = �z�
q
�T�t�; (2.2)

where, e.g., z� = 1:64 for � = 95%.

VAR

Density 

Profit and Loss

Figure 2.1: VAR as a quantile of the P&L distribution

For nonlinear portfolios, �i is the local sensitivity of the portfolio with respect to
!i: �i =

@v(!)
@!i

. However, this approximation can lead to errors which may become
dramatical for portfolios with high convexities.

Delta{Gamma Techniques

There exist several variants of the Delta{Normal method, which try to capture
the nonlinearity of portfolios by incorporating the convexity into �, e.g.:

�i =
@v(!)

@!i
+ �

@2v(!)

@!2i
; (2.3)

where � is a weight factor for convexity, whose value is based on experience. A
similar, but mathematically more grounded idea is used in Wilson's closed form
Delta{Gamma method (cf. [Wilson1], [Wilson2]).
The combination of delta and gamma risk described in [Schaefer] is based on the
following idea: The P&L function is approximated by a second order polynomial:
v(!) = 1

2
!T�! + �T!. After completion of the squares, this can be rewritten as

v(!) =
1

2
(e+ !)T�(e+ !) + f; (2.4)
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where e = ��1� and f = �1
2
�T��1�. The vector (e + !) represents a normally

distributed variate with mean e and variance �t. Schaefer observes that for pos-
itive de�nite � the quantity (e + !)T�(e + !) is a weighted sum of independent
non{central chi{squared variables, whose distribution can be calculated numeri-
cally.

7



Chapter 3

Maximum Loss Optimization

3.1 De�nition of ML

Maximum Loss (ML) is de�ned as:

The maximum loss
� over a given trust region At of risk factors (At will be assumed a
closed set with con�dence level Pr(! j ! 2 At) = �)

� for some holding period t.

This de�nition looks similar to the VAR de�nition of chapter 2.1. However, there
is one important di�erence: Whereas for calculating VAR the distribution of
P&L has to be known, ML is de�ned directly in the risk factor space 
. The
mathematical de�nition of Maximum Loss is:

ML = min v(!)

s.t. ! 2 At; where Pr(At) = �; (3.1)

In contrast to VAR, which depends on the holding period t and the con�dence
level �, ML has a supplementary degree of freedom, called \trust region" At:
any closed set in the risk factor space 
 with probability � is a valid trust region
(cf. �gure 3.1). Maximum Loss Optimization determines the worst case over such
a trust region At.

3.2 Modelling Maximum Loss

What are the components of the Maximum Loss approach and how can they be
modelled? This section gives some ideas on how the general ML framework might
be applied (cf. [Studer1]).
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Portfolio Valuation

Trust Region

Density of Risk Factors

Figure 3.1: Modelling Maximum Loss

Risk Factors

In principle, risk factors are the parameters of the valuation models, namely:

� equity indices,

� commodity prices (spot and futures),

� foreign exchange rates (relative to some home currency, e.g., CHF
DEM

; CHF
FRF

; : : :),

� interest rate curves for di�erent currencies,

� expected future volatilities of all the above risk factors.

Many of these variables are elements of J.P. Morgan's RiskMetrics data set
(cf. [RiskMetrics]).
There exist various ways to model changes in interest rate curves (cf. [Du�e]):
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� the simplest models divide the maturity axis into a set of time buckets.
Then, risk factors represent changes of the interest rate at well de�ned
maturity vertices.

� changes of the curve can be represented with the help of a \basis", e.g. as
combinations of shifts, tilts and humps (cf. �gure 3.2).

Shift Tilt Hump

Maturity axis

Figure 3.2: Elementary changes in the interest rate curve

� changes in the term structure can be decomposed by statistical methods
(e.g. principal component analysis or factor analysis; cf. [K�arki and Reyes],
[Schaefer]) into a set of factors building together some kind of basis.

The last two models have the advantage that the complete curve can be repre-
sented by a small number of variables, i.e., the dimensions of the risk factor space
can be dramatically reduced. Of course, this kind of representation can also be
used for modelling the term structure of volatilities.

P&L Surface

The P&L surface is constructed with the help of valuation models: In principle,
the complete portfolio has to be re{valuated for every point in the risk factor
space. However, if we assume additivity of the P&L function v(!) in the risk
factors !1; : : : ; !M , the P&L surface can be approximated by the following pro-
cedure:

1. For every risk factor !i, the complete portfolio is marked{to{market at
points !j

i (j = 1; : : : ; Ni) | the other risk factors are held constantly zero:

v
j
i = v(0; : : : ; 0; !j

i ; 0; : : : ; 0): (3.2)

This process can be seen as a portfolio valuation on a one{dimensional grid
(cf. �gure 3.3):

2. The one{dimensional grid values are extrapolated onto a multi{dimensional
grid by assuming strict additivity:
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Risk Factor i

Profit and Loss

Risk Factor k

Figure 3.3: One{dimensional portfolio valuation

v(!j1
1 ; : : : ; !

jM
M ) =

MX
i=1

v
ji
i : (3.3)

3. The P&L of points which do not lie on the multi{dimensional grid is ob-
tained by interpolation procedures (e.g., polynomial interpolation, splines).

If su�cient computational power is available for the exact valuation of the port-
folio on every point of the multi{dimensional grid, then the approximation in
formula (3.3) can be avoided. However, this requires

QM
i=1Ni valuations of the

complete portfolio instead of
PM

i=1Ni.
For well behaved situations, the number of portfolio valuations might be fur-
ther reduced by using local approximations (Taylor series) to obtain appropriate
approximations of the P&L surface.

3.3 Modelling Trust Regions

Trust regions are primarily de�ned with the help of the risk factor density ft(!).
In the following we explain the construction for multinormal distributions: As-
sume that the risk factors !1; : : : ; !M are multinormal variates with mean 0 and
covariance matrix �t. The joint density function is

ft(!) =
1

(2�)M=2
p
det �t

exp
�
�1

2
!T��1t !

�
: (3.4)

The goal is to �nd a trust region At which covers a probability of � and includes
the scenario ! = 0. One possible choice is to search a constant c such that
Pr f! j ft(!) � cg = �. This makes sense since ft(!) attains its maximum at
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! = 0 and leads to the trust region of minimal volume. By eliminating the
constants, the problem is reduced to the following: Find c� such that

Pr(! j !T��1t ! � c�) = �: (3.5)

Write

!T��1t ! = !TU�1U�T! = (U�T!)T (U�T!); (3.6)

where �t = UTU is the Cholesky decomposition of the covariance matrix. But

Var(U�T!) = E
h
(U�T!)(U�T!)T

i
= U�TVar(!)U�1

= U�TUTUU�1

= 1l: (3.7)

Hence, (U�T!) � N (0; 1l) and

!T��1t ! =
MX
i=1

X2
i ; (3.8)

where Xi are independent standard normal variates. Thus,
PM

i=1X
2
i is �

2 distrib-
uted with M degrees of freedom. Consequently, a valid trust region is obtained
by choosing:

At = f! j !T��1t ! � c�); (3.9)

where c� is the � quantile of a �2M distribution. This is the equation of an ellipsoid
centered at the origin. Supplementary conditions might eventually be introduced
to restrict the trust region further; chapter 3.4 shows how this can be done using
the triangular relationship of foreign exchange rates.

3.4 Modelling FX{Restrictions

The triangular relationship of foreign exchange rates leads to supplementary re-
strictions upon the trust region (cf. [Allen]): Consider the 3 currencies A;B and
C, where C is the home currency (reporting currency). Then, the cross rate A

B

is derived from the triangular relationship A
B
=

C

B
C

A

. Consequently, the model has

only two risk factors

!1 =
C

A
� kA (3.10)

!2 =
C

B
� kB; (3.11)
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where kA and kB are the actual values of the exchange rates. The assumption
of a multinormal distribution results in an ellipsoidal trust region. However, the
triangular relationship not only implies the value of the cross rate A

B
, but also its

volatitlity �̂ (cf. Appendix C). Formulating the condition that the cross rate has
to lie in the interior of a con�dence band leads to

�����!2 + kB

!1 + kA
� kB

kA

����� � z 1+�
2

�̂; (3.12)

where z 1+�
2

is the 1+�
2
{quantile of the standard normal distribution. This condi-

tion can be rewritten as two linear restrictions:

(�kB � kAz 1+�
2

�̂)!1 + kA!2 � k2Az 1+�
2

�̂ (3.13)

(kB � kAz 1+�
2

�̂)!1 � kA!2 � k2Az 1+�
2

�̂ (3.14)

These equations represent two hyperplanes, intersecting each other at (!1; !2) =
(�kA;�kB), the absolute zero of the exchange rates C

A
and C

B
(cf. �gure 3.4).

The result is a more realistic model, which leads to ML �gures that might be less
conservative.

Figure 3.4: E�ect of supplementary FX{restrictions
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Chapter 4

Comparison of VAR with ML

4.1 Relationship between VAR and ML

To compare VAR and ML we �x some con�dence level �. The risk factor dis-
tribution, as well as the holding period t, are supposed to be identical for both
models. Furthermore, it is assumed that

� the change in portfolio value v(!) is a continuous function,

� the joint density ft(!) is strictly positive on 
 (not necessarily normal).

The general de�nition of VAR given in formula (B.1) becomes:

VAR = min v̂

s.t. Pr(! j v(!) � v̂) � 1� �: (4.1)

The \active risk factor area" for VAR is de�ned as Bt = f! j v(!; t) � VARg;
the continuity of v(!) implies that this is a closed set. From the de�nition of Bt

it follows that

v(!) � VAR; 8! 2 Bt: (4.2)

For calculating ML, a closed trust region At with probability � has to be chosen.
Then, ML is then de�ned by formula (3.1) as:

MLAt = min v(!)

s.t. ! 2 At; where Pr(At) = �: (4.3)

The set Ct = (At [ Bt)
C is open. Assume | ad absurdum | that At \ Bt = ;.

The relation Pr(At) + Pr(Bt) � � + (1 � �) = 1 implies that Pr(At [ Bt) = 1
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and consequently Pr(Ct) = 0. The density function ft(!) is strictly positive on

, hence Ct = ; and At [Bt = 
. But 
 was supposed to be connected and the
sets At and Bt to be closed: this contradicts the assumption that At \ Bt = ;.
Consequently At \Bt 6= ; and

MLAt � MLAt\Bt � VAR; (4.4)

which means that ML is always more conservative than VAR. Figure 4.1 shows
how di�erent choices of trust regions At can produce di�erent values of ML: take
a portfolio consisting of one linear instrument. The underlying risk factor has a
standard normal distribution, the con�dence level is � = 95%.

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

Trust Region A1 Trust Region A2 Trust Region A3

P&L P&L P&L

Risk Factor 

Figure 4.1: Di�erent choices of trust regions

VAR of this portfolio is -1.64; ML however depends heavily on the choice of the
trust region:

� If the trust region A1 =]�1; 1:64] is chosen: MLA1 = �1:64.
� If the trust region A2 = [�1:96; 1:96] is chosen: MLA2 = �1:96.
� If the trust region A3 = [�1:64;1[ is chosen: MLA3 = �1.

In any case, the relation ML � VAR holds. It will be shown in chapter 4.3 that
for linear portfolios with normally distributed risk factors it is always possible to
\adjust" the con�dence level ~� of ML, such that | for the standard choice (3.9)
of At | ML and VAR become equal.

4.2 Example: Nonlinear Portfolio

Figure 4.2 shows an example of a nonlinear portfolio with 2 foreign exchange
rates C

A
and C

B
(cf. risk pro�les 3/4 in [Allen et al.]); the risk factors are !1 and

!2 respectively (measured in standard deviations).
Figure 4.3 shows the ellipsoidal trust region together with the cross{currency
restriction described in chapter 3.4. Note that the cross{currency restriction has
no e�ect on neither the Maximum Loss nor the Maximum Pro�t.
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Figure 4.2: P&L surface of FX{portfolio

Table 4.1 compares di�erent risk measures for this nonlinear portfolio. Notice
that the value of the Factor Push method (cf. [Wilson2]) is not only higher than
ML, it also exceeds VAR.

Con�dence level: 95% Location Risk

VAR (Monte{Carlo simulation) | �84:44
ML (numerical optimization)

 �0:36
1:16

!
�103:27

Factor push

 �1:64
1:64

!
�36:07

Table 4.1: Risk measures for nonlinear portfolio

4.3 VAR and ML for Multinormal Risk Factors

and Linear Risk Pro�les

Delta{Normal VAR is a methodology for calculating analytically the risk of a
portfolio if the risk factors are multinormal variates (i.e., ! � N (0;�t)) and if
P&L is a linear function (i.e., v(!) =

PM
i=1 ai!i ). If these two conditions both

hold, it is also possible to derive an analytical expression for ML:
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Figure 4.3: Trust region and cross{currency restrictions

ML = min aT!

s.t. !T��1t ! � c�; (4.5)

where the standard choice of the trust region is used (cf. chapter 3.3). De�ning
the functions f(!) = aT! and g(!) = !T��1t !�c�, the problem can be rewritten
as

ML = min f(!)

s.t. g(!) � 0: (4.6)

Since f(!) and g(!) are convex functions, the solution !� must satisfy the 3
Kuhn{Tucker conditions:

rf(!�) = ��rg(!�) (4.7)

�g(!�) = 0 (4.8)

� � 0: (4.9)

Equation (4.7) implies that

a = �2���1t !�; (4.10)
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and therefore � 6= 0. It follows that

!� = � 1

2�
�ta: (4.11)

Considering formula (4.8), this results in

1

�
=

2
p
c�p

aT�ta
: (4.12)

Hence, (4.11) allows to identify the worst case scenario

!� = �
p
c�p

aT�ta
�ta; (4.13)

and the corresponding loss is

ML = �pc�
q
aT�ta: (4.14)

This expression is very similar to Delta{Normal VAR (�z�
p
aT�ta); the only

di�erence lies in the scaling factor: c� is the �{quantile of a �2 distribution
with M degrees of freedom (cf. chapter 3.3), whereas z� is the �{quantile of a
standard normal distribution. Contrarily to VAR, ML depends on the number
of risk factors used in the model (cf. table 4.2).

M = 2 M = 5 M = 10 M = 50

� = 90:0% 1.67 2.37 3.12 6.20
� = 95:0% 1.49 2.02 2.60 5.00
� = 97:5% 1.39 1.83 2.31 4.31
� = 99:0% 1.30 1.67 2.07 3.75

Table 4.2: Relation ML/VAR

However, the choice of a di�erent con�dence level ~� 6= � such that
p
c~� = z�

leads to identical values for both measures. Since all quantities of formula (4.13)
| except the constant c� | are are known from the calculation of Delta{Normal
VAR, it is possible to determine the worst case scenario !� in every Delta{Normal
VAR implementation without additional costs.

4.4 Example: Linear Portfolio

The following example points out the fundamental di�erence between VAR and
ML: Whereas VAR is an expected value for the loss, ML is more conservative and
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represents the value of the worst case that may occur in looking at � percent of
all possible situations. Consider a linear portfolio consisting of 2 commodities:

� =

 
1
3

!
; �t =

 
1 0:5
0:5 2

!
; (4.15)

where � is the price sensitivity and �t is covariance matrix of the normally dis-
tributed price changes. The risk measures for a con�dence level of � = 95% are
shown in table 4.3:

Formula Value

VAR �z�
p
�T�t� -7.69

ML �pc�
p
�T�t� -11.48

Table 4.3: Comparison of VAR and ML

Besides the value of the Maximum Loss, the methodology gives also information

about the worst case scenario !� = �pc�p
�T�t�

�t� =

 �1:30
�3:39

!
.

4.5 ML for Multinormal Risk Factors and

Quadratic Risk Pro�les

Consider a portfolio with a quadratic risk pro�le: v(!) = 1
2
!TG! + aT!. Calcu-

lating ML means solving the problem

ML = min
1

2
!TG! + aT!

s.t. !T��1t ! � c�: (4.16)

Since �t is positive de�nite, there exists a Cholesky{decomposition

�t = UTU: (4.17)

Writing ! = UT !̂ leads to an equivalent formulation to (4.16):

ML = min
1

2
!̂T Ĝ!̂ + âT !̂

s.t. !̂T !̂ � c�; (4.18)

where â = Ua and Ĝ = UGUT . Again, the objective function is quadratic,
but this time the constraint represents a sphere, centered at the origin. The
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Levenberg{Marquardt method (cf. [Fletcher]) allows to solve this kind of problem
numerically by searching in an iterative process � 2 IR and !̂(k) 2 IRM satisfying

(Ĝ+ �I)!̂(k) = �â
�fc� � (!̂(k))T !̂(k)g = 0

� � 0: (4.19)

The key idea of the algorithm is to make a one{dimensional parameter search for
� � 0, such that (Ĝ+ �I) is positive de�nite, until !̂(k) := �(Ĝ+ �I)�1â satis�es
the condition �fc� � (!̂(k))T !̂(k)g = 0. Once such an !̂(k) is found, it is also a
solution to (4.18). Astonishing is the fact that this algorithm is time polynomial,
i.e. ML can be calculated very e�ciently.

4.6 Assessment of ML

ML provides a very general framework for risk measurement (cf. �gure 4.4): As
has been shown in chapter 4.1, ML gives results identical to Delta{Normal VAR
for linear portfolios with multinormally distributed risk factors (if a corrected
con�dence level ~� is chosen). On the other hand, Wilson's Delta{Gamma ap-
proach is just one particular implementation of Maximum Loss Optimization. A
summary of the qualities of Maximum Loss is given in table 4.4.

Wilson’s Delta-Gamma 

Delta-Normal VAR

Maximum Loss Optimization

Figure 4.4: Hierarchy of risk measurement techniques

4.7 Outlook

The results obtained so far are on the way of gaining insight into what con�gu-
ration of risk factors are necessary to cover the whole range of market risks. As
pointed out in chapter 4.5, the computation of ML for quadratic (not necessar-
ily convex) risk pro�les is possible and, even more, can be computed e�ciently.
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Pros Cons

� correlation based

� handles nonlinearity

� quadratic risk pro�les can be an-
alyzed e�ciently

� any level of aggregation possible

� risk factors not restricted to nor-
mal distribution

� no assumptions on P&L distrib-
ution required

� marginal contributions (shadow
prices) can be computed

� identi�cation of worst case

� stable market rate innovations re-
quired

� modelling of trust region pre-
sumes normally distributed risk
factors

� computationally demanding in
general case

Table 4.4: Pros and cons of ML

Using this feature for a family of expanding trust regions allows to generate a
\worst case scenario path" in the risk space. This path provides rich information
on the exposure of a given portfolio | and may lead to determine risk reducing
strategies. Even in case of non quadratic P&L functions, the quadratic con-
cept described above may be appropriate to investigate the \local" behavior and,
hence, to guide the search process for computing ML.
Furthermore, we intend to cope with the high dimensionality of the problem by
making additional structural assumptions on the P&L functions as described in
chapter 3.2, especially regarding additivity and piecewise linear approximations.
Towards that end we started to set up a test environment to make comparisons
for di�erent portfolios including the BIS portfolio. We expect to report numer-
ical results in the near future and to run \in{house" test cases together with
the collaborating institutions. In these implementations, the concepts of \risk{
mapping" and \aggregation of risk factors" become important topics: Not only
we expect to derive some guidelines for \good" mappings (such that accurate
results can be obtained e�ciently), but also to investigate in more depth how
worst case scenarios from several portfolios can be aggregated in the overall risk
space.
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Appendix A

Stochastic Models of Market

Rate Innovations

The modelling of market rates has a great inuence on the risk measurement
model itself: market rates r such as commodity prices, equity indices or FX rates
are generally supposed to follow geometric Brownian motion (cf. [Hull]):

dr

r
= �dt+ �dz; (A.1)

where � is the drift factor and � the volatility; t is time and dz is a Wiener
process (i.e., dz � N (0; dt) ). The application of Itô's lemma to the function
log r leads to

log

 
r + dr

r

!
=

 
�� �2

2

!
dt+ �dz: (A.2)

If the constant drift rate (�� �2

2
)dt is eliminated, it follows that

log

 
r + dr

r

!
� N (0; �2dt); (A.3)

which means that the driftless returns are lognormally distributed. A �rst order
Taylor approximation results in

log

 
r + dr

r

!
= log(r + dr)� log(r)

�
�
log(r) + dr

1

r

�
� log(r)

=
dr

r
; (A.4)

which implies that the driftless relative returns are approximately normally dis-
tributed:
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dr

r
� N (0; �2dt): (A.5)

If the value V of an instrument depends linearly on r (cf. [RiskMetrics]), i.e.,

V = Pr; (A.6)

where P is the position of the instrument, then

dV = Pdr = V
dr

r
: (A.7)

Hence, the change in value is normally distributed with mean 0 and volatility
V �

p
dt.

For interest rates, however, the situation is somewhat di�erent: The present value
~V of a zero coupon bond of maturity n is

~V = ~P (1 + rn)
�n; (A.8)

where ~P is the face value of the bond and rn is the zero coupon rate of an n year
investment. It follows that

d ~V = � n

1 + rn
~P (1 + rn)

�ndrn

= �D ~V drn (A.9)

= �D ~V rn
drn

rn
: (A.10)

The term D = n
1+rn

is called \modi�ed duration" (cf. [RiskMetrics]). If the
interest rate rn is supposed to follow geometric Brownian motion, equation (A.10)
implies that d ~V is normally distributed:

d ~V � N (0; D2 ~V 2r2n�
2dt): (A.11)

Most often, however, interest rates rn are assumed to follow arithmetic Brownian
motion (i.e., drn = �dt+ �dz ), therefore

d ~V � N (0; D2 ~V 2�2dt); (A.12)

by equation (A.9). Note that the variance of formula (A.11) is r2n times the
variance of (A.12).
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Appendix B

General De�nition of VAR

Consider the portfolio of �gure B.1:
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Figure B.1: Value of portfolio with underlying normal density

Its P&L distribution is shown in �gure B.2. The VAR de�nition of formula (2.1)
can not be applied here because the P&L distribution is no longer continuous.
However, it is possible to generalize the VAR de�nition:

VAR = min v̂

s.t. Pr(! j v(!) � v̂) � 1� �; (B.1)

For continuous and strictly monotone P&L distributions, the solution of this
problem is also the unique solution to Pr(! j v(!) � v̂) = 1 � �, the de�ning
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equation of chapter 2.1. Hence, the generalized de�nition (B.1), which is used in
the proof the ML�VAR (cf. chapter 4.1), is consistent with the usual de�nition
of VAR.

-2 -1 1 2

0.2

0.4

0.6
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1

Cumulative Probability
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Figure B.2: P&L distribution of the portfolio
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Appendix C

Implied Volatilities of

Cross{Currency Rates

Consider 3 related currency rates x = C
A
, y = C

B
and z = A

B
. Clearly

z =
A

B
=

C
B
C
A

=
y

x
: (C.1)

Di�erentiating this expression leads to:

dz =
1

x
dy � y

x2
dx; (C.2)

and consequently

dz

z
=

1

z

y

x

dy

y
� 1

z

y

x

dx

x
=

dy

y
� dx

x
: (C.3)

Assuming the relative rate innovations to be normally distributed (cf. Appen-
dix A), i.e., dx

x
� N (0; �2x) and

dy
y
� N (0; �2y), it follows that

dz

z
� N (0; �2x + �2y � 2�x;y�x�y); (C.4)

where �x;y is the correlation between dx
x
and dy

y
.
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Appendix D

Stress Testing

\Stress Testing" means investigating the impacts of improbable market conditions
with the help of extreme scenarios. Stress testing is not a risk measure by itself: it
is a meta{method which has to be used in conjunction with quantitative analyses
such as:

� portfolio valuation,

� P&L for subclasses of instruments,

� greeks (i.e., �;�;�; �; �),

� Delta{Normal VAR,

� duration,

� cashows,

which have to be determined for every scenario of a given set. Contrasting these
values may help to get a better understanding of the qualities of a complex
portfolio; in particular, risky market conditions may be identi�ed.
The main problem of stress testing is the de�nition of a meaningful set of sce-
narios: A good a priori knowledge of the portfolio structure is required in order
to de�ne a reasonably small set of scenarios covering all eventualities.
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