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Abstract

Effective risk management requires adequate risk measurement. A basic pro-
blem herein is the quantification of market risk: what is the overall effect on a
portfolio’s value if the market rates change? To answer this question, two funda-
mental difficulties have to be managed: first, market rates behave randomly and
are correlated. Second, portfolio structures are high–dimensional and typically
nonlinear.

The established risk measurement techniques can be divided into two catego-
ries. The purely stochastic approaches are based on the portfolio’s profit and
loss (P&L) distribution. The most popular method in this class is Value–at–
Risk (VaR), which typically represents the 1 or 5 percent quantile of the P&L
distribution.

The Maximum Loss (ML) methodology is a member of the second category, where
risk is quantified by the value of some worst case scenario. Many of these worst
case based measures examine a finite set of scenarios and do not take account of
correlations (e.g. stress testing). The more elaborated methods determine the
worst case scenario by solving constrained minimization problems, where the set
of feasible scenarios is generally defined by the stochastic characteristics of the
market rates.

Compared to other worst case techniques, the Maximum Loss methodology uses
a very particular choice of feasible domains: the so–called trust regions cover a
certain percentage of all future outcomes and their shape reflects the correlation
structure of the market rates. Furthermore, ML uses a polynomial time algorithm
to identify the global minimum, whereas other techniques employ rudimentary
optimization procedures. The fact that the Maximum Loss computation is ba-
sed on a fast and reliable algorithm allows to solve the optimization problem
repeatedly, which leads to new insights into the risks of nonlinear portfolios.

This thesis is divided into five chapters: the first chapter derives the standard
assumptions of risk management from the basics of financial calculus. Some of the
established risk measurement techniques are presented in a unifying framework
and their basic properties are discussed. The chapter ends with the introduction
of the Maximum Loss concept.

Chapter 2 treats the modelling of risk factors in the ML approach. We discuss
the transformation of market rates into more abstract risk factors, which are used
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to construct a comprehensive and consistent risk model of moderate size.
The mathematical core of Maximum Loss is outlined in Chapter 3. Several opti-
mization problems are formulated and solution strategies are discussed. Moreo-
ver, the relations of ML and Value–at–Risk are established and the importance
of the worst case scenario is emphasized by sensitivity analyses.
Chapter 4 constitutes the engineering part of the thesis. A repetitive computation
of worst case scenarios for growing trust regions leads to the ML path, which
can be used for a risk characterization of portfolios. The concept of dynamic
approximations is introduced to handle highly nonlinear functions. Finally, the
key driving factors of risk are determined by solving restricted ML problems.
Risk measurement is the groundwork for an active management of risks at the
firm level. The question of how to contrast return and risk leads to the problem of
risk adjusted performance measurement, which is the subject of Chapter 5. Some
of the most popular performance measures are presented and their relationships
are investigated.
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Zusammenfassung

Das Messen von Risiken ist Voraussetzung, um Risiken gezielt steuern zu können.
Ein wichtiges Problem spielt dabei die Quantifizierung von Marktrisiken: Wel-
chen Einfluss haben Schwankungen in den Marktsätzen auf den Wert eines Porte-
feuilles? Die Beantwortung dieser Frage erfordert, sich mit zwei grundlegen-
den Schwierigkeiten auseinander zu setzen: Zum einen verhalten sich Marktsätze
zufällig und sind untereinander korreliert; zum anderen ist die Struktur von Porte-
feuilles hochdimensional und typischerweise nichtlinear.

Die bekannten Methoden zur Risikomessung können in zwei Gruppen eingeteilt
werden. Die rein stochastischen Ansätze basieren auf der Wahrscheinlichkeitsver-
teilung des Gewinns/Verlusts. Die bekannteste Methode aus dieser Klasse ist der
sogenannte Value–at–Risk (VaR), der typischerweise das 1 oder 5 Prozentquantil
der Gewinn–/Verlustverteilung repräsentiert.

Der Maximum Loss (ML) gehört zur zweiten Kategorie der Risikomasse, welche
Risiko als den Verlust eines Worst Case Szenarios quantifiziert. Viele der Worst
Case basierten Methoden betrachten eine endliche Menge von Marktszenarien,
ohne die Korrelationen zwischen den Marktsätzen zu berücksichtigen (z.B. Stress
Testing). Die weiterentwickelten Verfahren lösen restringierte Minimierungspro-
bleme, wobei das Zulässigkeitsgebiet meist durch die stochastischen Eigenschaften
der Marktsätze bestimmt wird.

Bei der Maximum Loss Methode werden, im Unterschied zu anderen Worst Ca-
se Techniken, die Zulässigkeitsgebiete ganz speziell gewählt: die sogenannten
Trust Regions enthalten einen wohldefinierten Teil aller möglichen Realisationen
und ihre Form widerspiegelt die Korrelationsstruktur der Marktsätze. Während
die meisten anderen Techniken rudimentäre Optimierungsmethoden zur Bestim-
mung des Worst Case Szenarios benutzen, beruht das Optimierungsverfahren
von Maximum Loss auf einem zeitpolynomialen Algorithmus. Durch den Einsatz
eines schnellen, zuverlässigen Lösungsverfahrens wird es möglich, das Optimie-
rungsproblem wiederholt zu berechnen und dadurch neue Einblicke in die Risiken
nichtlinearer Portfolios zu gewinnen.

Diese Arbeit ist in fünf Kapitel gegliedert: Im ersten Kapitel werden, ausgehend
von den Grundlagen der Finanzmathematik, die Standardmodelle des Riskmana-
gements entwickelt. Einige weitverbreitete Methoden zur Risikomessung werden
unter einem einheitlichen Rahmen vorgestellt und ihre Eigenschaften eingehend
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diskutiert. Am Ende des Kapitels wird das Grundkonzept von Maximum Loss
eingeführt.
Im Kapitel 2 wird die Modellierung der Risikofaktoren im Maximum Loss Ver-
fahren behandelt. Es wird gezeigt, wie man aus den Marktsätzen abstrakte Risi-
kofaktoren gewinnt, welche es erlauben, ein umfassendes und konsistentes Modell
von beschränktem Umfang zu entwickeln.
Der mathematische Kern von Maximum Loss wird in Kapitel 3 vorgestellt. Un-
terschiedliche Optimierungsprobleme werden formuliert und Lösungsstrategien
werden diskutiert. Ausserdem wird auf den Zusammenhang zwischen Maximum
Loss und Value–at–Risk eingegangen, und die Bedeutung des Worst Case Szena-
rios wird anhand von Sensitivitätsanalysen vertieft.
Kapitel 4 stellt den praktischen Einsatz von Maximum Loss in den Vordergrund.
Durch wiederholte Berechnung des Worst Case Szenarios für grösser werdende
Trust Regions lässt sich ein ML Pfad bestimmen, der dazu benutzt wird, Port-
feuilles im Hinblick auf ihre Risiken und Chancen zu charakterisieren. Um hoch-
gradig nichtlineare Funktionen zu behandeln, wird das Konzept der dynamischen
Approximation eingeführt. Abschliessend diskutieren wir, wie sich die risikotrei-
benden Faktoren durch das Lösen von restringierten ML Problemen identifizieren
lassen.
Risikomessung ist Grundlage für das Management von Risiken auf Unternehmens-
ebene. Die Frage, wie Rendite und Risiko einander gegenüber zu stellen sind,
führt zum Problem der risikoadjustierten Performancemessung. Diesem Thema
wird in Kapitel 5 nachgegangen, wo einige der meistverbreiteten Performance-
masse vorgestellt und ihre Gemeinsamkeiten und Zusammenhänge untersucht
werden.
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Chapter 1

Market Risk Measurement

1.1 Introduction

In a complex and changing world, stability in the sense of only minor volatil-
ity in the economy is not achievable: fast, global information leads to mature
markets with increased competition. This promotes globalization and compels
financial institutions to increase their performance. Thus, it becomes essential to
understand the implications of market volatility.

Market risk , sometimes also called price risk , denotes the uncertainty engendered
by market volatility, i.e. the possibility to lose money due to changes in market
prices. Whereas quantitative techniques for the analysis of individual financial
instruments are well established, further research on risk measurement for entire
portfolios is still required.

The necessity to measure risks arose from the regulatory requirements of the
supervisory authorities, who have to ensure that sufficient cushions of economic
capital are held as a protection against any potential unexpected losses. Until
the 1980’s, the banking industry was heavily focused toward credit business. In-
creasing competitiveness resulted in a growing number of banking failures and in
1988, the Basle Committee on Banking Supervision (‘Basle Committee’), which
was set up under the auspices of the Bank for International Settlements in Basle
and which will be referred to simply as the BIS, released the ‘International Con-
vergence of Capital Measurement and Capital Standards’. This document, which
is also called the ‘Basle Accord’, established a common minimum framework for
calculating the capital adequacy of banks with regard to credit risk.1

The augmenting importance of stock markets, the increasing volume of derivat-
ives and decreasing profit margins forced banks to extend their trading activities
and to take on new risks. The Basle Committee reacted to this development and
issued in 1993 proposals for additional market risk requirements, which primarily
explicated a standardized technique for measuring market risk to which we will

1See BIS (1988), pp. 21.
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refer as the ‘BIS Standardized Methodology’. This so–called ‘building block’ ap-
proach is a set of simple rules and formulas, which define the capital requirement
for market risk as the sum of

• the interest rate risk of each currency

• the commodity risk of each commodity

• the equity risk of each market

• the foreign exchange risk of all currencies.

The proposal was heavily criticized from the banking industry as being too crude
because it neither differentiates between the riskiness of different assets, nor takes
into account the correlations between assets — which leads to an overestimation
of the total risk. Nonetheless, this method became an element of the final 1996
‘Amendment to the Capital Accord to Incorporate Market Risk’2.
Increased competition and pressure from rating agencies and regulators produced
a need for more sophisticated risk measurement techniques, leading to the lower-
ing of the capital requirements. Also, the demand for bank internal risk measure-
ment intensified: the availability of a common yardstick, which allows to compare
the risk of different portfolios and business units, is an indispensable basis for an
operative management of risks. Furthermore, the ability to link expected earn-
ings and risk is a prerequisite for a risk adjusted performance measurement and,
consequently, a conditio sine qua non for an effective capital allocation and the
strategic management of the firm. The dialog between the Basle Committee
and the financial industry resulted in the fact that the Value–at–Risk 3 (VaR)
approach became an accepted risk measure in the 1996 amendment.4

Since the beginning of the 1990s, the trading volume of derivative instruments
has drastically augmented and given rise to highly nonlinear portfolios5. The
consequence is that simple answers to the question ‘what is the overall risk of a
portfolio?’ exist less than ever before. This is reflected in the 1996 amendment,
where a combined use of several risk measurement techniques is prescribed.6

The Maximum Loss methodology which is described in this thesis has been de-
veloped to provide new insights into the risks of nonlinear portfolios. It can be
understood as a systematic way to identify the ‘black holes’ of a portfolio under
normal market conditions, without ignoring the correlations between the mar-
ket rates. In its basic form, Maximum Loss enables to actively manage risks

2See BIS (1996a) and BIS (1996a).
3See Section 1.3.1.
4See BIS (1995).
5A nonlinear portfolio is a portfolio whose value does not linearly depend on the market

rates.
6The Basle Committee specifies that VaR models have to be accompanied by stress tests,

cf. BIS (1996b), pp. 46.

2



since it clarifies the sources of risk, provides the ability to find the key drivers of
a portfolio’s profit and loss, helps to determine risk reducing transactions, and
provides estimates of the incremental risk of single trades. More sophisticated
applications of the Maximum Loss concept examine the dynamic development of
risks and therefore enable advanced risk characterizations of portfolios.

1.2 Definitions and Basic Assumptions

This section introduces the terminology used in risk measurement. In particular,
the fundamental notions of risk factors and profit and loss functions are explained
in Section 1.2.1, and the hypothesis of normally distributed risk factors is justified
in Section 1.2.2.

1.2.1 Notations and Definitions

When we measure the market risk of a portfolio, we are interested in the joint
effect of changes of the market rates (e.g. commodity prices, foreign exchange
rates, equity indices, interest rates, implied volatilities) on the portfolio value.
In a mathematical model, these market rates can be represented by stochastic
processes (X i

t)t≥0, i = 1, . . . ,M , which are defined on the probability space
(Ω,A,P).7

We will restrict the analysis to the time interval [0, T ], where t = 0 is the current
time and T stands for the time horizon which is considered relevant for the risk
analysis. T is also called holding period and it represents the maximum time
required to liquidate or hedge the portfolio. In other words, it is assumed that
the whole portfolio is exposed to changes in market rates during a period of length
T .
The term ‘risk’ can be understood as the possibility that the real development
deviates negatively from the planned development ;8 positive deviations are usually
called ‘chances’. Consequently, we will compare the values X i

T of the stochastic
processes i = 1, . . . ,M with the expected outcomes at the end of the holding
period:

Definition 1.1 ψi = X i
T is the random variable which represents the outcome of

market rate i = 1, . . . ,M at time T . The expected value at time T is denoted by
ψ̄i = E(ψi). The difference ωi = ψi − ψ̄i is called risk factor.9

Thus, the risk factors ω = (ω1, . . . , ωM) describe the deviations of the market
rates from their expected value at time T . It follows from Definition 1.1 that

7See Appendix A for an exhibition of the fundamentals of stochastic calculus.
8See Moser and Quast (1994), p. 665.
9The term ‘risk factor’ means ‘source of risk’ and is not related to statistical multiple factor

models; cf. Beckers (1996), pp. 175.
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ω : Ω → IRM is a random vector with mean 0 (and not, as in usual notation,
ω ∈ Ω). The distribution of ω corresponds to the centered marginal distribution
of the stochastic processes (X i

t)t≥0, i = 1, . . . ,M , at time T (the end of the
holding period).
Although ω : Ω → IRM is by Definition 1.1 a random vector, the symbol ω is also
used — by abuse of notation — for realizations of risk factors.10 A particular
realization is also called a scenario and the set of realizable scenarios is defined
as O = {ω ∈ IRM | ∃XT : ω = XT − E(XT )}. For subsets U ⊆ IRM , we denote
by P(U) := P({ω | ω ∈ U}) the probability which is induced by the probability
space (Ω,A,P). For technical reasons, we require that:

Assumption 1.2 The set of realizable scenarios O is a connected subset of IRM

with P(O) = 1 and it contains the scenario ω = 0.

Moreover, we assume that the values of all market rates at time t = 0 are known;
they are denoted by ψ0

i = X i
0, i = 1, . . . ,M .

In practice, pricing models are used for assessing the effect of future market rates
ψ = (ψ1, . . . , ψM) on the portfolio value. We postulate to have a function u(ψ)
at disposal, which gives the value of the portfolio at time T for every possible
outcome of ψ. Since the risk factors ω represent the deviations of the market
rates ψ from their expected values ψ̄ (i.e. ψ = ψ̄ + ω), we define a profit and
loss function v(ω), which measures the change in portfolio value caused by the
deviations in the market rates:

Definition 1.3 Let u(ψ) be the portfolio value function. The profit and loss
(P&L) function v(ω) is defined as

v(ω) = u(ψ̄ + ω)− u(ψ̄).

Hence, the P&L function v(ω) can be seen as a deterministic function of the
random vector ω; positive values of v(ω) represent profits and negative values
represent losses.

Remark 1.4 Definitions 1.1 and 1.3 imply that

v(0) = u(ψ̄ + 0)− u(ψ̄) = 0, (1.1)

which states that there are neither unexpected profits nor losses if the market rates
behave as expected.

10The meaning of the symbol ω will be clear from the context: when we discuss stochastic
risk measures (e.g. Value–at–Risk, Section 1.3.1), ω has to be interpreted as a random vector.
On the other hand, in worst case based risk measures (e.g. Maximum Loss, Section 1.5 and
Chapters 2–4), ω stands mostly for scenarios.
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Remark 1.4 motivates the definition of meaningful P&L functions:

Definition 1.5 The set of admissible P&L functions is V = {v : O → IR |
v(0) = 0}.

To avoid technical problems, we assume that

Assumption 1.6 Every P&L function v : O → IR is a continuous function
which is zero on all open subsets U ⊂ O with measure P(U) = 0.11

In the sequel we will mainly work with linear and quadratic portfolio structures.
Thus, we distinguish:

Definition 1.7 The subset of linear portfolios is

Vl = {vl ∈ V | vl(ω) = aTω, a ∈ IRM},

and the subset of quadratic portfolios is

Vq = {vq ∈ V | vq(ω) =
1

2
ωTGω + gTω,G = GT ∈ IRM×M , g ∈ RM}.

Obviously, linear and quadratic P&L functions can always be obtained from the
local price sensitivities δ and Γ:

Definition 1.8 δ ∈ IRM is the first order price sensitivity defined by δi = ∂u(ψ)
∂ψi

|ψ̄
for i = 1, . . . ,M, and Γ ∈ IRM×M is the symmetric matrix of second order

sensitivities (Γ)i,j = ∂2u(ψ)
∂ψi∂ψj

|ψ̄.12

Finally, a risk measure ρ is a function which assigns to a portfolio v(ω) a real
number ρ(v) to be interpreted as its risk; the possibility to lose money is expressed
by negative values of ρ. We allow risk measures to be defined only for specific
subclasses of portfolios, e.g. linear or quadratic portfolios. Thus, ρ : Vρ → IR,
where Vρ is a subset of V .

1.2.2 Risk Factor Distribution

For risk measurement purposes, it is usually claimed that the risk factors are
normally distributed. This section presents the mathematical backgrounds of
this choice.

11The second condition is trivially satisfied if the risk factors are multinormally distributed,
cf. Assumption 1.12.

12For many financial instruments, the local sensitivities can directly be obtained from valu-
ation models. The formulas for the Black–Scholes model, for example, can be found in Cox and
Rubinstein (1985), pp. 210.
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Let (Xt)t≥0 represent the process of a market rate, e.g. a stock price. According
to the standard assumption of finance,13 (Xt)t≥0 typically follows a geometric
Brownian motion:

dXt = µXXtdt + σXXtdBt, (1.2)

where µX is the drift rate, σX the volatility and (Bt)t≥0 a standard Brownian
motion.14 If we set X0 = x0, this expression can be rewritten as (and indeed is
defined via) Xt = x0 +

∫ t

0
µXXsds+

∫ t

0
σXXsdBs. Then, the formal15 application

of Itô’s lemma16 to g(Xt) = log(Xt) leads to

log(Xt) = log(X0) +

∫ t

0

1

Xs

dXs −
1

2

∫ t

0

σ2
XX2

s

X2
s

ds.

Using equation (1.2), it follows that

Xt = x0 exp

((
µX −

σ2
X

2

)
t + σXBt

)
. (1.3)

It is easy to verify that (1.3) is a solution to the problem (1.2), and it can be
proved indeed that this solution is unique.17 Hence, the logreturns log(Xt

X0
) are

normally distributed with mean (µX− σ2
X

2
)t and variance σ2

Xt. It should be noted
that many empirical studies18 have shown that the hypothesis of normally dis-
tributed logreturns is only a rough approximation of reality.19 Nonetheless, this
assumption is widely used in practice, mainly because of the analytical tractab-
ility of the normal distribution.
In our usual notation, where ψi denotes the value of the stochastic process at time
T (the end of the holding period) and ψ0

i is the value at time 0, equation (1.3) can

be restated as ψi = ψ0
i exp((µi−σ2

i

2
)T+σiB

i
T ), where µi is the drift, σi the volatility

and (Bi
t)t≥0 the standard Brownian motion for market rate i, i = 1, . . . ,M . It

follows that

log

(
ψi

ψ0
i

)
=

(
µi −

σ2
i

2

)
T + σiB

i
T . (1.4)

13See Hull (1993), pp. 197.
14See Appendix A.
15In fact, the function log(Xt) is not in C2.
16See Appendix A.
17See Lamberton and Lapeyre (1993), pp. 56.
18See Taylor (1986), p. 44.
19Indeed, analyses of time series show that the distributions of logreturns are slightly skewed

(i.e. asymmetric) and leptokurtic (i.e. fat tailed).
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A first order Taylor expansion around ψ0
i results in

log

(
ψi

ψ0
i

)
= log(ψ0

i + (ψi − ψ0
i ))− log(ψ0

i )

≈
[
log(ψ0

i ) +
ψi − ψ0

i

ψ0
i

]
− log(ψ0

i )

≈ ψi − ψ0
i

ψ0
i

,

which implies together with (1.4) that
ψi−ψ0

i

ψ0
i

≈
(
µi − σ2

i

2

)
T + σiB

i
T . If we take

this approximation as an exact equality, we get normally distributed risk factors:

Theorem 1.9 If
ψi−ψ0

i

ψ0
i

=
(
µi − σ2

i

2

)
T + σiB

i
T , then ωi ∼ N (0, (ψ0

i σi)
2T ).

Proof: Since (Bi
t)t≥0 is a standard Brownian motion it follows that Bi

T ∼
N (0, T ), which implies

ψi − ψ0
i

ψ0
i

∼ N
(

(µi −
σ2
i

2
)T, σ2

i T

)
. (1.5)

Thus, we get ψi ∼ N
(
ψ0
i [1 + (µi − σ2

i

2
)T ], (ψ0

i σi)
2T

)
because ψ0

i is a constant.

Then, the definition of the risk factors ωi = ψi − ψ̄i, where ψ̄i = E(ψi), proves
the theorem.

Sometimes, the behavior of interest rates is modelled directly by Brownian motion
with drift.20 In this case, it is easy to show that ωi ∼ N (0, σ2

i T ); in the present
context, this would be equivalent to setting ψ0

i ≡ 1.
Finally, it remains to introduce the correlations between the risk factors:

Lemma 1.10 If Corr(
ψi−ψ0

i

ψ0
i

,
ψj−ψ0

j

ψ0
j

) = ρi,j, then Corr(ωi, ωj) = ρi,j.

Proof: The basic properties of the correlation assert that

Corr

(
ψi − ψ0

i

ψ0
i

,
ψj − ψ0

j

ψ0
j

)
= Corr(ψi − ψ̄i, ψj − ψ̄j) = Corr(ωi, ωj).

20This means, that the process (Xt)t≥0 satisfies the differential equation dXt = µXdt+σXdBt;
see Chen (1996), p. 3.
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Corollary 1.11 If Var(
ψi−ψ0

i

ψ0
i

) = σ2
i T for i = 1, . . . ,M and Corr(

ψi−ψ0
i

ψ0
i

,
ψj−ψ0

j

ψ0
j

) =

ρi,j, then ω ∼ N (0,Σ), where the elements of the covariance matrix are given by
(Σ)i,j = ρi,jψ

0
iψ

0
jσiσjT .

Proof: This is a direct consequence of Theorem 1.9 and Lemma 1.10.

Hence, the model of normally distributed returns (1.5) justifies the following
assumption:

Assumption 1.12 The risk factors ω are multinormally distributed with mean
0 and positive definite covariance matrix Σ.

It should be noted that this assumption does not imply that the return processes
(Xt+T−Xt

Xt
)t≥0 are Gaussian; it only states that the conditional distribution of

XT−X0

X0
at time t = 0 is normal.21

1.3 Established Risk Measurement Techniques

This section presents some popular risk measurement techniques under the uni-
fying framework established in Section 1.2.1.

Remark 1.13 The factor push methodology22, stress testing23, as well as the
scanning charge calculation24 of the SPAN25 framework are special cases of the
more general Maximum Loss concept, which will be introduced in Section 1.5.

1.3.1 Value–at–Risk

The currently most popular methodology for measuring market risk is Value–at–
Risk (VaR).26 It is defined as

the level of P&L, which is exceeded
• with probability α,
• over some time interval T .

Turned the other way round, VaR reflects below which level of P&L a fraction of
(1−α) of all outcomes will be. It is clear that this risk measure heavily depends on

21Hence, the covariance matrix Σ (for a fixed holding period T ) may depend on time (i.e.
today’s Σ can be different from tomorrow’s) and might be estimated from various forecast
methodologies, e.g. moving averages or GARCH models (cf. Alexander (1996), pp. 234).

22See Wilson (1996), pp. 224.
23See Dembo et al. (1995).
24See SPAN (1997).
25Standard Portfolio Analysis of Risk; cf. SPAN (1993).
26See Beckström and Campbell (1995).
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the choice of parameters, which is a controversial subject in practice. The length
of the holding period T should reflect the time needed to liquidate or hedge the
portfolio and may be influenced by the type of products and the markets on which
they are traded, the size of the owned positions relative to the issue size, the credit
rating of the issuer, the turnover of the instruments, etc. The confidence level α
is usually chosen between 95% and 99%, the latter being the choice of the Basle
Committee27. Furthermore, it should not be neglected that every risk assessment
comprises predictive elements and therefore heavily depends on our beliefs and
models (e.g. the forecast of variances and correlations)28. Since ω is a random
vector, we define:

Definition 1.14 For a continuous, strictly increasing P&L distribution function,
Value–at–Risk for a confidence level α is that level of loss VaR(α) for which
P({ω ∈ O | v(ω) ≤ VaR(α)}) = 1− α.29

If we look at v(ω) as a random variable (and not as a deterministic function of a
random vector), then VaR corresponds to the (1−α)–quantile of the P&L distri-
bution. This interpretation also agrees with the way in which VaR is calculated:
First, the distribution of the P&L is constructed from the (deterministic) P&L
function v(ω) and the distribution of the risk factors. Then, the (1−α)–quantile
of this one–dimensional distribution gives the Value–at–Risk (cf. Figure 1.1).

Portfolio Valuation (P&L)

Distribution of Risk Factors

1

VaR

1−α

P&L Distribution

Figure 1.1: Interpretation of VaR

27See BIS (1996a), p. 2.
28See Alexander (1996), pp. 233.
29For general P&L distribution functions, VaR might be defined as VaR(α) = inf{y ∈ IR |

P({ω ∈ O | v(ω) ≤ y}) ≥ 1− α}; this generalized definition keeps all results about VaR valid.
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VaR of Linear Portfolios

The Value–at–Risk of linear portfolios can be calculated analytically:

Lemma 1.15 Let vl(ω) = aTω be a linear portfolio with normally distributed
risk factors ω ∼ N (0,Σ). Then vl(ω) ∼ N (0, aTΣa).

Proof: First, note that any linear combination of normally distributed
variables is again normally distributed. The result follows immediately since
E(aTω) = aTE(ω) and Cov(aTω) = aTCov(ω)a.

Theorem 1.16 The Value–at–Risk of a linear portfolio vl(ω) = aTω is equal
to VaR(α) = −zα

√
aTΣa, where zα is the α–quantile of the standard normal

distribution.

Proof: Let Y ∼ N (0, σ2), then Y
σ
∼ N (0, 1) and (−zασ) is the (1− α)–quantile

of Y .

Example 1.17 The portfolio of Figure 1.2 will be used in the sequel to illustrate
various aspects of risk measurement methodologies. It is an equity portfolio with
seven risk factors ω1, . . . , ω7 which represent each an equity index. The dots
display the P&L if each of the risk factors moves up or down 1, respectively
2 standard deviations separately. The solid lines show the quadratic functions
v

(i)
q (ωi) = 1

2
Gi,iω

2
i + giωi, i = 1, . . . , 7, which best fit to these points (in a least

squares sense). Apparently, the P&L function of this portfolio can reasonably be
approximated by a quadratic function vq(ω) (which is, however, different from the
δ–Γ approximation of Definition 1.8, which only considers local information).
Figure 1.3 displays the P&L distribution of the quadratic approximation vq(ω) =∑7

i=1 v
(i)
q (ωi) as well as for the linear approximation vl(ω) =

∑7
i=1 giωi.

30 The
fact that the portfolio is almost perfectly delta hedged results in a Delta–Normal
VaR of almost 0, whereas the (1 − α)–quantile of the quadratic model is nearly
−1000.

This example shows that nonlinearity can have tremendous effects on a portfo-
lio’s risk. Hence, it is essential to dispose of risk measurement techniques which
consider nonlinear portfolio structures.

VaR of Quadratic Portfolios

For nonlinear portfolios, there exists no analytic expression of VaR. However,
it is possible to calculate the Value–at–Risk of a quadratic portfolio vq(ω) =
1
2
ωTGω + gTω numerically.

30The separability of the global P&L functions v(ω) =
∑7

i=1 v
(i)(ωi) is justified because there

are no instruments in the portfolio which depend one more than one risk factor.
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Figure 1.2: Risk profiles of test portfolio

Definition 1.18 Let Σ = UTU be the Cholesky decomposition of the covariance
matrix and let O be the orthonormal matrix of eigenvectors of UGUT .31 The
transformed system is defined as ṽq(ω̃) = 1

2
ω̃T G̃ω̃ + g̃T ω̃, where g̃ = OUg, G̃ =

OUGUTOT and ω̃ = OU−Tω.

Lemma 1.19 The matrix G̃ is diagonal.

Proof: Since O is the matrix of the eigenvectors of UGUT , it satisfies
UGUToi = λioi, where oi is the ith eigenvector of UGUT (i.e. the ith
vector of O) and λi the corresponding eigenvalue. The fact that O is orthonor-
mal implies that G̃ is the diagonal matrix made up of the eigenvalues of UGUT .

Lemma 1.20 The transformed risk factors ω̃i, i = 1, . . . ,M , are independent
standard normally distributed variables.

Proof: ω̃ is a linear combination of normally distributed variables with E(ω̃) = 0
and Cov(ω̃) = E(ω̃ω̃T ) = OU−TΣU−1OT = I.

31There exist M orthonormal eigenvectors of UGUT since UGUT is symmetric.
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Figure 1.3: P&L distribution of test portfolio

Lemma 1.21 The functions vq(ω) and ṽq(ω̃) are identical: vq(ω) = ṽq(ω̃) for
ω̃ = OU−Tω.

Proof: This is an immediate consequence of g̃T ω̃ = gTUTOTOU−Tω = gTω and
ω̃T G̃ω̃ = ωTU−1OT (OUGUTOT )OU−Tω = ωTGω.

Thus, the original risk factors ω have become independent N (0, 1) variables and
the new quadratic P&L function ṽq(ω̃) has no mixed terms. Hence, the P&L
function ṽq(ω̃) can be separated into a sum of purely quadratic and a sum of
purely linear terms:32

Definition 1.22 Let I = {i ∈ {1, . . . ,M} | (G̃)i,i �= 0}, J = {i ∈ {1, . . . ,M}|
(G̃)i,i = 0}. Define ω̌i = ω̃i +

g̃i

(G̃)i,i
, i ∈ I, and ω̌i = ω̃i, i ∈ J . The separated P&L

function v̌q(ω̌) is defined as

v̌q(ω̌) =
∑
i∈I

1

2
(G̃)i,iω̌

2
i +

∑
i∈J

g̃iω̌i −
∑
i∈I

g̃2
i

2(G̃)i,i
.

Theorem 1.23 The random variables ω̌i, i = 1, . . . ,M, are independent and the
functions v̌q(ω̌) and ṽq(ω̃) are identical.

Proof: The mutual independence of ω̌i, i = 1, . . . ,M, is due to the fact that
each ω̌i corresponds to a translated variable ω̃i, which are themselves mutually
independent.

32See Schaefer (1995).

12



On the other hand, 1
2
(G̃)i,iω̌

2
i −

g̃2
i

2(G̃)i,i
= 1

2
(G̃)i,iω̃

2
i + g̃iω̃i for i ∈ I, and g̃iω̌i = g̃iω̃i

for i ∈ J , which proves that v̌q(ω̌) and ṽq(ω̃) are identical.

As a result, v̌q(ω̌) is a linear combination of M independent random variables: for
i ∈ J , the separated risk factors ω̌i are standard normally distributed, whereas
for i ∈ I, the quantities ω̌2

i are noncentral χ2 variables with one degree of freedom
and noncentrality parameter ( g̃i

(G̃)i,i
)2.

To calculate VaR, Rouvinez (1997) uses the fact that the moment generating
function of a linear combination of independent variables is the product of the
moment generating functions of the individual variables. Then, the inversion
theorem33 allows to calculate numerically the probability of a given fractile z,
i.e. P(v̌q(ω̌) ≤ z); a detailed exhibition is given in Appendix B. VaR, which
is the (1 − α)–quantile of the P&L distribution, is then determined by using a
bisectionning technique, which converges to that value of z for which P(v̌q(ω̌) ≤
z) = 1− α.

VaR by Monte Carlo Simulation

Monte Carlo simulation is used to determine the P&L distribution of more gen-
eral, not quadratic, P&L functions, where (in practice) it is still assumed that
the risk factors are normally distributed.34 The basic idea is to draw a random
set of representative scenarios, to value the portfolio for each scenario, and to
take the distribution of the resulting P&Ls as a representative of the true P&L
distribution. More concretely, the algorithm of the Monte Carlo simulation looks
as follows:

1. Draw a set of n independent scenarios S = {ω(1), . . . , ω(n)}, where each
ω(i) ∼ N (0,Σ).35

2. Value the portfolio for each scenario: P = {v(ω(1)), . . . , v(ω(n))}.

3. Sort P in increasing order: v(1) ≤ . . . ≤ v(n).

4. VaR is estimated by some interpolation of v(�(1−α)n�) and v(�(1−α)n�).

Pritsker (1996) discusses computational aspects of Monte Carlo simulation as
well as the construction of confidence intervals for such estimates.36

33See Davies (1973), pp. 415.
34See Jorion (1997), pp. 241.
35To generate a random variable ω ∼ N (0,Σ), first draw M independent components yi ∼

N (0, 1), i = 1, . . . ,M . Let Σ = UTU be the Cholesky decomposition of the covariance matrix,
then ω = UT y has the desired distribution since Cov(ω) = UT Cov(y)U = Σ.

36The confidence bounds are based on the order statistics of n iid random variables and are
constructed from a single set P = {v(ω(1)), . . . , v(ω(n))} of random draws; multiple runs of the
simulation procedure are not required.
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VaR by Historical Simulation

Historical simulation is commonly used to avoid making assumptions about the
distribution of risk factors. It differs from the previously discussed Monte Carlo
simulation in step 1, where the scenario set S is constructed: instead of using
scenarios that come from a random distribution, S is a set of historical scenarios,
e.g. the changes in the market rates which have been observed during the last n
holding periods.

1.3.2 BIS Standardized Methodology

The Basle Committee on Banking Supervision of the Bank for International Set-
tlements (BIS) proposed in 1993 a standardized measurement methodology for
establishing the overall market risk of financial institutions.37

The aim of this section is to present the so–called ‘building–block’ approach in
the framework which has been established in Section 1.2.1. Readers who are
not familiar to this methodology will get an impression of the complexity of the
calculation procedures and understand the shortcomings of this technique. The
mathematical formulation, which is elaborated in the following, will be used in
Section 1.4.2 where it is shown that the BIS Standardized Methodology is weakly
coherent.
The BIS approach distinguishes between general market risk and specific risk:
general market risk is the risk caused by changes in rates related to a whole
market, whereas specific risks are due to price movements which are purely related
to the individual issue/issuer. More precisely, the methodology uses individual
risk factors for:38

• the interest rate risk of each currency

• the equity risk of each market

• the foreign exchange risk of all exchange rates together

• the commodity risk of each commodity

• the gamma risk of all options with identical underlying

• the vega risk39 of all options with identical underlying

• the specific risk of each interest rate related issue

• the specific risk of each individual equity.

37See BIS (1996a), p. 7.
38See BIS (1996b), pp. 9.
39Vega risk is the risk due to changes in the volatility of the underlying; it is also called

volatility risk , cf. Remark 2.1.
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Although this model leads to a considerable number M of risk factors, the simple
structure of the function v(ω) =

∑M
i=1 vi(ωi) compensates for this drawback. The

separated functions vi(ωi) are defined by the market values of the instruments:

Definition 1.24 Let J be the set of all instruments of the portfolio. Denote by
mj the market value40 of instrument j, j ∈ J . Define Hi = {j ∈ J | value of
instrument j depends on risk factor ωi}. The net long position in risk factor ωi

is p
(l)
i =

∑
j∈Hi

m+
j , the net short position is p

(s)
i =

∑
j∈Hi

|m−
j |, where m+

j =

max{0,mj} and m−
j = min{0,mj}. Then,

• p
(N)
i = |p(l)

i − p
(s)
i | is the net position of risk factor ωi

• p
(G)
i = |p(l)

i + p
(s)
i | is the gross position of risk factor ωi

• p
(H)
i = max{p(l)

i , p
(s)
i } is the higher net position of risk factor ωi

• p
(M)
i = min{p(l)

i , p
(s)
i } is the matched position of risk factor ωi

• p
(γ)
i = |min{0, 1

2

∑
j∈Hi

Γj(θimj)
2}| is the gamma–impact of all options on

the underlying i. The symbol Γj denotes the second order price sensitiv-
ity41 of instrument j with respect to the underlying i, and θi is a weighting
coefficient for the underlying i.

• p
(υ)
i = 1

4
σi|

∑
j∈Hi

υj| is the vega–impact of all options with underlying i; σi

is the implied volatility of the underlying.42

In our usual notation, the individual P&L functions become

vi(ωi) = (p
(l)
i − p

(s)
i )ωi. (1.6)

For each such function, a risk figure ρ
(·)
i (vi) is then defined on the basis of the

positions p
(·)
i :

Definition 1.25 Depending on the risk category to which risk factor ωi belongs,
the individual risk component ρi(vi) is defined as:

• ρ
(1)
i (vi) = −(p

(N)
i + κip

(M)
i ), 0 ≤ κi ≤ 1 for interest rate risk, commodity

risk and general equity risk

• ρ
(2)
i (vi) = −p

(G)
i for specific equity risk

• ρ
(3)
i (vi) = −p

(H)
i for foreign exchange risk43

40For options, the market value of the underlying is δ–weighted, i.e. multiplied by the δ of
the instrument.

41See Definition 1.8.
42υj is the price sensitivity of instrument j with respect to changes in the volatility σi. υj

has positive value for long positions and negative value for short positions.
43Note that there is only one risk factor which accounts for all exchange rates together.
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• ρ
(4)
i (vi) = −p

(γ)
i for gamma risk.

• ρ
(5)
i (vi) = −p

(υ)
i for vega risk.

The components of type ρ
(1)
i (vi) are utilized for risk factors which have a term

structure. They are determined by the following procedure:

1. All instruments are slotted into a maturity ladder44 and their market value
is multiplied with a time–band dependent weight, which reflects the price
sensitivity with respect to a one basis point move.

2. The long and short positions within each time–band are matched and a
fraction of these matched amounts reflect the basis risk.

3. The remaining net long/short positions of each time–band are matched
against each other (across the time–bands) and the matched amounts ac-
count for the shape risk of the yield curve.

4. Finally, the net value p
(N)
i is identical to the unmatched part of the portfolio

and mirrors the yield curve shift risk.

Example 1.26 Assume that we are short a call option on a 3 month interest rate
future maturing in 2 months. For simplicity, we suppose that the market value of
the underlying is m = 1000 and the price sensitivities are δ = 0.3,Γ = 0.05 and
υ = 5.
For determining the interest rate risk, the future has to be mapped into the ma-
turity ladder (step 1.): a future can be decomposed into a combination of a long
and a short position of different maturities. The 2 month time–band has a weight
of 0.002 and the 5 month time–band of 0.004; therefore we get (by δ–weighting
the market value of the option’s underlying):

• 2 month risk–weighted position: 0.002δm = 0.6

• 5 month risk–weighted position: −0.004δm = −1.2

Since there is only one position in each time–band, step 2. is dropped. Step 3.
relates to the matching across the time–bands and leads to p(M) = min{0.6, 1.2} =
0.6; the weighting coefficient for matching across time–bands of 0–12 months is
0.4. The net position of step 4. is p(N) = |0.6 − 1.2| = 0.6, which results in an
overall interest rate risk of ρ(1) = −(p(N) + 0.4p(M)) = −0.84.
The gamma–impact of the option is equal to |min{0,−1

2
Γ(0.002m)2}| = 0.1,

which leads to an overall gamma risk of ρ(4) = −0.1.
Finally, the vega risk is −1

4
0.3|υ| = −0.375, where it has been assumed that the

implied volatility is equal to 0.3.

44The relevant time–band depends on the residual term to maturity.
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Once all the elements ρ
(·)
i (vi) have been determined, the total risk of the portfolio

ρ(v) is obtained by adding the weighted45 risk components

ρ(v) =
M∑
i=1

wiρ
(·)
i (vi), wi > 0, i = 1, . . . ,M. (1.7)

Remark 1.27 The BIS Standardized Methodology does not take account of in-
dividual correlations among the risk factors nor of diversification effects. In fact,
the addition of absolute values corresponds to assuming that all correlations are
equal to ±1.

Example 1.28 Suppose that the two commodities A and B are perfectly correl-
ated in the sense that the price of B is l times the price of A (i.e. each price
change of 1 unit for commodity A goes along with a price change of l units in
B). We construct the following portfolio:

• take a long position of l physical units of commodity A

• take a short position of 1 physical unit of commodity B.

This portfolio is perfectly hedged since each increase of x units in the price of A
results in a profit of lx units for commodity A and an equal loss for B. However,
the BIS rules lead to a total risk of −2wlψA, where ψA is the current price of 1
physical unit of A and w is the risk weight of the two assets.

1.4 Coherency

What are the characteristics which a practical risk measure should have? Whereas
the risk measurement techniques of Section 1.3 were first defined and only later
their properties were investigated, Artzner et al. (1996) went the other way round
and defined a set of axioms which are to be satisfied by every ‘reasonable’ measure
of risk.

1.4.1 Definition of Coherent Risk Measures

The axiomatic approach of Artzner et al. (1996) prescribes what mathematical
properties a meaningful risk measure, more precisely capital requirement measure
r(v), should have:46

45The fact that the risk weights wi are not well differentiated for different assets i was heavily
criticized by practitioners since it encourages taking positions in risky assets.

46A capital requirement measure r(v) defines how much capital has to be held for portfolio
v as a cushion against potential future losses.
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Definition 1.29 Let G = {v | v : O → IR} be the set of all functions on the set
of realizable scenarios O. A capital requirement measure r(v) is called coherent
if it satisfies the following properties:

(P0) r : G → IR+

(P1) r(v) = r(v−), ∀v ∈ G

(P2) r(λv) = λr(v), ∀v ∈ G, λ ∈ IR+

(P3) r(v1 + v2) ≤ r(v1) + r(v2), ∀v1, v2 ∈ G

(P4) r(v) ≤ − infω∈O v(ω), ∀v ∈ G

(P5) r(v − c) = r(v) + c, ∀v ≤ 0, c ∈ IR+

The condition (P0) states that the capital requirement should be a positive
amount. Property (P1) says that the capital requirement may only depend on the
losses and (P2) implies that the losses can be scaled: the capital for λ identical
portfolios should be λ times the capital for one portfolio.47

The so–called subadditivity property (P3) is the most interesting one: it says that
the capital requirement of two combined portfolios should not be greater than the
sum of the individual requirements, hence, global risk management is encouraged.
On the other hand, splitting a portfolio in two smaller parts should not reduce
the capital requirement: there should be no possibilities of manipulating the
regulatory standards by creation of subsidiaries. Subadditivity means also that
risk measurement can safely be decentralized and that risk control can safely be
delegated.

Example 1.30 Imagine a risk control system based on additive limits: the total
capital lT is split up on two portfolios lT = l1 + l2. If the capital requirement is
not subadditive, it can happen that each portfolio is within its limits

r(v1) ≤ l1, r(v2) ≤ l2,

but that the capital limits of the entire institution are exceeded: r(v1 + v2) ≥ lT .

(P4) states that the capital requirements of a portfolio should not be higher than
its maximal possible loss. Finally, (P5) says that if a portfolio, which has only
negative outcomes, is affected by a supplementary deterministic loss of c units,
this should increase the capital requirement by an amount of c.
At this point, it becomes important to distinguish the notions of ‘risk’ and ‘cap-
ital requirement’: A risk measure ρ provides a means for comparing the risk of
different portfolios — its absolute value (unit of measurement) is unimportant.

47The assumption (P2) is only reasonable for liquid markets.
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Contrarily, the capital requirement r(v) says how much capital must be held as
a protection against potential future losses.48 Thus, the capital requirement of a
portfolio is measured in some monetary unit and defined as

r(v) = −[p(ψ̄) + h(ρ(v))], (1.8)

where p(ψ̄) is the profit or loss which incurs over the interval [0, T ] if the expected
outcome ψ̄ is attained at time T . The function h : IR → IR transforms the risk
figure ρ(v) into a capital charge.49

To define what properties a ‘good’ risk measure ρ(v) should have, the notion of
coherent capital requirement needs to be adapted. Since the main purpose of a
risk measure ρ(v) is to enable a comparison of several portfolios, a limitation of
ρ(v) to some absolute value, as stated in (P4), is unimportant. Moreover, (P5)
can be seen as a condition which relates ρ(v) and p(ψ̄), but it makes no statement
about ρ(v) itself. Therefore, we will define a ‘reasonable’ measure of risk as one
which satisfies the properties (P0)–(P3) of the original framework:

Definition 1.31 A risk measure ρ : Vρ → IR is called weakly coherent if it
satisfies conditions (P0’) to (P3’):

(P0’) ρ : Vρ → IR−

(P1’) ρ(v) = ρ(v−), ∀v ∈ Vρ

(P2’) ρ(λv) = λρ(v), ∀v ∈ Vρ, λ ∈ IR+

(P3’) ρ(v1 + v2) ≥ ρ(v1) + ρ(v2), ∀v1, v2 ∈ Vρ

The conditions (P1’), (P2’) and (P3’) imply several characteristics:

Lemma 1.32 If ρ is weakly coherent, then ρ(0) = 0.

Proof: This is an immediate consequence of (P2’).

Thus, an empty portfolio has now risk. More generally, a portfolio which produces
only gains has no risk:

Corollary 1.33 If ρ is weakly coherent and v ≥ 0, then ρ(v) = 0.

Proof: Trivial, since ρ(v) = ρ(v−) = ρ(0) by (P1’).

Finally, a weakly coherent risk measure allows to compare the risk of portfolios
since it defines a partial ordering:

48See Duffie and Pan (1997), p. 4.
49The BIS multiplication factor of 3 is an example of such a transformation, cf. BIS (1996a),

pp. 3.
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Theorem 1.34 If ρ is weakly coherent, then ρ(v1) ≤ ρ(v2) for all v1 ≤ v2.

Proof: Let v2 = v1 + (v2 − v1). The superadditivity property (P3’) implies that

ρ(v2) ≥ ρ(v1) + ρ(v2 − v1).

But ρ(v2 − v1) = 0 by Corollary 1.33, hence ρ(v2) ≥ ρ(v1).

1.4.2 Discussion of Risk Measurement Techniques

Value–at–Risk

Remark 1.35 In general, VaR is not weakly coherent since it does not satisfy
the superadditivity property (P3’).

Example 1.36 Consider two portfolios A and B, the first with P&L function
vA(ω) = −ω2

1, having no positions in risk factor ω2, and the second vB(ω) = −ω2
2.

If the two risk factors are independent and standard normally distributed, the
P&L functions of A and B are both χ2 distributed with one degree of freedom and
therefore

VaRA(75%) = VaRB(75%) = −1.32.

On the other hand, the composite portfolio (A ∪ B) is χ2 distributed with two
degrees of freedom: VaRA∪B(75%) = −2.77, which shows that the superadditivity
condition VaRA∪B(75%) ≥ VaRA(75%) + VaRB(75%) is violated.

However, there is one important exception among the quantile based risk meas-
ures:

Theorem 1.37 Delta–Normal VaR for confidence levels α ≥ 50% is weakly co-
herent.

Proof: It is easy to verify that Delta–Normal VaR(α) = −zα
√
aTΣa satisfies

conditions (P0’) to (P2’) if α ≥ 50%, since in this case zα ≥ 0.
The superadditivity property (P3’) is also satisfied: let vl,A(ω) = aTω and
vl,B(ω) = bTω be two linear portfolios and take the Cholesky decomposition
of the covariance matrix Σ = UTU . If we define ã = Ua and b̃ = Ub, then

(a + b)TΣ(a + b) = ãT ã + b̃T b̃ + 2ãT b̃

≤ ãT ã + b̃T b̃ + 2
√
ãT ã

√
b̃T b̃

≤ (
√
ãT ã +

√
b̃T b̃)2

≤ (
√
aTΣa +

√
bTΣb)2,
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where the inequality is due to the Schwarz inequality. Taking the square root and
multiplying by (−zα), which is negative for α ≥ 50%, proves the superadditivity.

BIS Standardized Methodology

Under the BIS Standardized Methodology50, the total risk of a portfolio is simply
a weighted sum of individual risk components. Each component is a function of
the long and short positions in one risk factor; either their sum, maximum, net
value or matched value.51

Theorem 1.38 The BIS Standardized Methodology is a weakly coherent risk
measure.

Proof: By formula (1.7), ρ(v) =
∑M

i=1 wiρ
(·)
i (vi) is the weighted sum of individual

risk components, where wi > 0, i = 1, . . . ,M . Thus, it is sufficient to prove
that each component of type ρ(1), . . . , ρ(4) is weakly coherent. Property (P0’)
is obviously satisfied because each ρ(·) is of the form −|x|. (P1’) and (P2’) are
fulfilled because each individual P&L function vi(ωi) is linear by formula (1.6).
The superadditivity property is not obvious, since the matching procedure does
not satisfy (P3’).52 However, matched positions p(M) always appear together with
netted positions p(N) and we will show that their combination is superadditive.
To shorten the notation, we fix one risk factor for all four cases. p

(l)
A and p

(s)
A

denote the net long and net short positions in portfolio A, p
(l)
B and p

(s)
B those in

portfolio B:

• Component ρ(1):
Since p

(N)
A + p

(M)
A = max{p(l)

A , p
(s)
A }, it follows that

p
(N)
A∪B + p

(M)
A∪B = max{p(l)

A∪B, p
(s)
A∪B}

= max{p(l)
A + p

(l)
B , p

(s)
A + p

(s)
B }

≤ max{p(l)
A , p

(s)
A }+ max{p(l)

B , p
(s)
B }

≤ (p
(N)
A + p

(M)
A ) + (p

(N)
B + p

(M)
B ). (1.9)

50See Section 1.3.2.
51See Definitions 1.24 and 1.25.
52To see this, take a portfolio A which holds only long positions p(l) of an asset and a portfolio

B which holds only short positions p(s). Then,

p
(M)
A∪B = min{p(l), p(s)} ≥ min{p(l), 0}+ min{0, p(s)} = p

(M)
A + p

(M)
B ,

since p(l), p(s) ≥ 0 by Definition 1.24. Thus, we get for the risk, which is a negative amount,
−p(M)

A∪B ≤ −(p(M)
A + p

(M)
B ), which contradicts superadditivity.
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Hence, κ(p
(N)
A∪B + p

(M)
A∪B) ≤ κ(p

(N)
A + p

(M)
A + p

(N)
B + p

(M)
B ) for κ ≥ 0. The

definition of ρ(1) leads to

ρ
(1)
A∪B(vA∪B) = −(1− κ)p

(N)
A∪B − κ(p

(N)
A∪B + p

(M)
A∪B)

≥ −(1− κ)(p
(N)
A + p

(N)
B )− κ(p

(N)
A + p

(M)
A + p

(N)
B + p

(M)
B )

≥ ρ
(1)
A (vA) + ρ

(1)
B (vB)

as long as 0 ≤ κ ≤ 1.

• Component ρ(2):
Using the definition of the gross value, we get

ρ
(2)
A (vA) + ρ

(2)
B (vB) = −(p

(l)
A + p

(s)
A + p

(l)
B + p

(s)
B )

= −(p
(l)
A∪B + p

(s)
A∪B)

= ρ
(2)
A∪B(vA∪B).

• Component ρ(3):
The proof for the higher net has already been given in equation (1.9), since
ρ(3)(v) = max{p(l), p(s)} = p(N) + p(M).

• Component ρ(4):
Set p

(l)
A = p

(l)
B = 0, p

(s)
A = |min{0, 1

2

∑
j∈Hi∩A Γjm

2
j}|, p

(s)
B = |min{0,

1
2

∑
j∈Hi∩B Γjm

2
j}| and compare to the case of ρ(2).

• Component ρ(5):
Set p

(l)
A = p

(l)
B = 0, p

(s)
A = 1

4
σi|

∑
j∈Hi∩A υj|, p

(s)
B = 1

4
σi|

∑
j∈Hi∩B υj| and

compare to ρ(2), noting that the volatility σi is nonnegative.

1.5 Maximum Loss

This section introduces the fundamentals of the Maximum Loss (ML) risk
measure. Maximum Loss is principally a methodology to determine the worst
case scenario under normal market conditions, without ignoring the correlations
among the risk factors. It is defined as

The maximum loss that can occur

22



• over some holding period T
• if the risk factors are restricted to a given set T ⊆ O,

where T is a closed set which contains the scenario ω = 0 and has a confidence
level P(T ) = α. This definition of ML has some similarities to the definition of
VaR in Section 1.3.1. However, there is one important difference: Whereas for
calculating VaR the distribution of P&L has to be known (and whose determin-
ation is the crucial point in all VaR methods), ML is directly defined on the set
of realizable scenarios O. The mathematical definition of Maximum Loss is

Definition 1.39 Let v(ω) be the P&L function. Maximum Loss is the solution
of the minimization problem

ML(α) = min v(ω)

s.t. ω ∈ T ,

where T is a given closed subset of O which must satisfy the conditions 0 ∈ T
and P(T ) = α.

For a given portfolio, VaR depends on two parameters: the holding period T and
the confidence level α. ML, however, has a supplementary degree of freedom,
called ‘trust region’ T : any closed subset of O which contains the scenario ω = 0
and which has a probability α is a valid trust region. ML represents the maximal
loss over such a trust region (cf. Figure 1.4).
The most important difference to the previously discussed risk measurement tech-
niques is that the solution process of ML not only produces a risk figure, but that
it also determines the worst case scenario ω∗. This scenario tells which combin-
ation of risk factors is most dangerous for the portfolio and it is a basic element
for a proactive risk management. For example, the knowledge of ω∗ allows to de-
termine risk reducing transactions or to estimate the incremental risk of a single
trade; a detailed discussion follows in Chapter 3.

1.5.1 Coherency of Maximum Loss

Theorem 1.40 Maximum Loss is a weakly coherent risk measure.

Proof: The conditions (P0’) and (P1’) are satisfied because the scenario
ω = 0 is, by construction, an element of the trust region T and v(0) = 0. Ba-
sic properties of the minimum operator assert (P2’) and (P3’) for a fixed set T .

Hence, Maximum Loss has some theoretical advantages over the previously dis-
cussed methods: ML is a risk measure for nonlinear portfolios, it is weakly coher-
ent and respects (by the choice of the trust region T ) correlations. In contrast,
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Portfolio Valuation

Trust Region

Density of Risk Factors

Figure 1.4: Modelling Maximum Loss

VaR is not weakly coherent for nonlinear portfolios and the BIS Standardized
Methodology does not take correlations between risk factors into account.

Remark 1.41 All risk measurement techniques which are based on a worst case
analysis of a discrete set of scenarios, such as stress testing, the factor push meth-
odology or the scanning charge of the SPAN framework53, are weakly coherent.

53In the SPAN methodology, however, the inter–commodity spread credits are not weakly
coherent, which implies that SPAN’s overall risk measure is not weakly coherent.
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Chapter 2

Risk Factor Models

2.1 Introduction

This section shows how to transform the financial realm into a mathematical
model which is adapted to the Maximum Loss methodology. More precisely, it
will be explained of what type the relations between market rates and risk factors
should be and how these risk factors can be modelled. The key idea is to choose a
set of risk factors which allows to value the portfolio in a straightforward manner.
Contrarily to most other risk measurement techniques, the ML methodology does
not only determine a risk figure, but it also offers the capability of identifying
worst case scenarios . Consequently, the set of the realizable scenarios O can be
seen as a set in the space of the risk factors , and the following conditions should
be satisfied:

• the set of risk factors {ω1, . . . , ωM} should be rich enough1 to reflect all
relevant risks2

• every scenario ω ∈ O should give all the information which is required to
value the portfolio, i.e. to determine the P&L v(ω)

• the risk factors should be interpretable, i.e. they should reflect real market
rates and not some abstract quantity

• every scenario ω ∈ O should represent a consistent set of market rates
(no–arbitrage conditions should be satisfied).

Whereas RiskMetrics requires a preliminary step where cash flows are mapped
into a maturity ladder3, there is no corresponding operation in the ML technique.

1For example, market rates which have a term structure need to be modelled as a finite
number of risk factors, or different equities are often aggregated into a single variable.

2In practice, the number M of risk factors is limited by the availability of reliable data
for estimating the covariance matrix Σ and by the restricted resources (space and time) for
numerical computations.

3See RiskMetrics (1996), pp. 107.
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All that needs to be done is to value the portfolio for a prescribed set of scenarios
S = {ω(1), . . . , ω(n)}. The resulting profit and losses P = {ξ(1), . . . , ξ(n)} are then
used to construct an approximating P&L function v(ω); details of this procedure
are discussed in Section 4.2.
Since one of the goals of Maximum Loss is to identify the most dangerous devel-
opments of a market , we will limit the risk factor model to general market risks;
specific risks which are related to individual issues or issuers will not be part of
the risk factor model.4

In the following, we discuss risk factor models which satisfy all of the above
conditions; the sections are organized by the nature of risks:

• currency risk

• equity risk

• interest rate risk

• commodity risk.

Remark 2.1 The value of contingent claims depends not only on the underlying
ψi, but also on the volatility5 of ψi. For ease of notation, we will denote the
volatility of the market rate ψi by ψσ,i. It should be noted that ψσ,i is not directly
related to the variance (Σ)i,i of risk factor ωi because ψσ,i and (Σ)i,i refer to
different time horizons.
Since the volatility ψσ,i can vary during the time interval [0, T ], we need a risk
factor ωσ,i which reflects the deviation of the real outcome ψσ,i from the expected
value ψ̄σ,i at time T . Consequently, the covariance matrix Σ must also hold the
covariances of the various volatility risk factors.6

2.2 Currency Risk

If positions in foreign currencies are held, two types of risk can occur:

• FX rate risk: the risk due to changes in exchange rates

• FX volatility risk: the risk related to changes in the volatilities of the
exchange rates.

4However, once the most adverse movements of the total market have been identified, it is
possible to assess the Maximum Loss of specific risks in a second model, which uses risk factors
which are related to individual issues/issuers.

5When speaking about valuation, the technical term ‘volatility’ usually refers to the annu-
alized standard deviation.

6Procedures for estimating the variance of the volatility ψσ,i are described in Cox and
Rubinstein (1985), pp. 255 and pp. 278.
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2.2.1 FX Rate Risk

When working with currencies, consistency plays a particularly important role:

Definition 2.2 Let H denote the reporting currency7, and let A and B be two
foreign currencies. The value of the foreign exchange rate H

A
at time T is denoted

by ψH
A

and the corresponding risk factor is ωH
A
. Similarly, ωH

B
is the risk factor

of the rate H
B

with value ψH
B
.

The triangular relationship (no–arbitrage condition) between the foreign exchan-
ge rates H

A
and H

B
determines the value of the cross rate ψA

B
uniquely:

Lemma 2.3 The value of the cross rate A
B

is

ψA
B

=
ωH

B
+ ψ̄H

B

ωH
A

+ ψ̄H
A

,

where, according to Definition 1.1, ψ̄i denotes the expected outcome of risk factor
i at the end of the holding period.

Proof: The triangular relationship implies that ψA
B

=
ψH

B

ψH
A

=
ωH

B
+ψ̄H

B

ωH
A

+ψ̄H
A

, since

ωi = ψi − ψ̄i by Definition 1.1.

Hence, the risk factors of the foreign exchange rates determine uniquely the val-
ues of all cross rates. Moreover, the distributions of the foreign exchange rates
determine the distributions of the cross rates:

2.2.2 FX Volatility Risk

In Section 1.2.2 it was shown that the standard assumption of finance leads to
Xt−Xs

Xs
≈ (µX − σ2

X

2
)(t − s) + σX(Bt − Bs), 0 ≤ s < t, where (Xt)t≥0 is an Itô–

process8 satisfying dXt = µXXtdt + σXXtdBt. If we take this approximation
as an equality for infinitesimal time intervals dt, we get with a slight abuse of
notation

dXt

Xt

∼ N
((

µX −
σ2
X

2

)
dt, σ2

Xdt

)
.

If
(
X

H
A
t

)
t≥0

denotes the process of the foreign exchange rate H
A

and
(
X

H
B
t

)
t≥0

of

H
B

, it follows that

7The reporting currency is the currency used for measuring the P&L.
8See Appendix A.
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Theorem 2.4 If
dX

H
A

t

X
H
A

t

∼ N (µH
A
dt, σ2

H
A

dt) and
dX

H
B

t

X
H
B

t

∼ N (µH
B
dt, σ2

H
B

dt) with

Corr

(
dX

H
A

t

X
H
A

t

,
dX

H
B

t

X
H
B

t

)
= ρH

A
,H
B
, then

dX
A
B
t

X
A
B
t

∼ N (µA
B
dt, σ2

A
B

dt), where

σ2
A
B

= σ2
H
A

+ σ2
H
B
− 2ρH

A
,H
B
σH

A
σH

B
.

Proof: Since X
A
B
t =

X
H
B

t

X
H
A

t

, it follows that dX
A
B
t = 1

X
H
A

t

dX
H
B
t − X

H
B

t(
X

H
A

t

)2dX
H
A
t ,

and consequently
dX

A
B
t

X
A
B
t

=
dX

H
B

t

X
H
B

t

− dX
H
A

t

X
H
A

t

, which shows that
dX

A
B
t

X
A
B
t

is the dif-

ference of two normally distributed variables with µA
B

= µH
B
− µH

A
and

σ2
A
B

= σ2
H
A

+ σ2
H
B

− 2ρH
A
,H
B
σH

A
σH

B
.

This relation allows to calculate the volatility of the cross rate from the volatility
risk factors of the foreign exchange rates:

Corollary 2.5 Let ωσ,H
A

be the volatility risk factor of the foreign exchange rate

H
A

and ωσ,H
B

the volatility risk factor of H
B

. If Corr

(
dX

H
A

t

X
H
A

t

,
dX

H
B

t

X
H
B

t

)
= ρH

A
,H
B
, then

the volatility of the cross rate A
B

is

ψσ,A
B

=
√

(ωσ,H
A

+ ψ̄σ,H
A
)2 + (ωσ,H

B
+ ψ̄σ,H

B
)2 − 2ρH

A
,H
B

(ωσ,H
A

+ ψ̄σ,H
A
)(ωσ,H

B
+ ψ̄σ,H

B
).

Proof: From Theorem 2.4 we conclude that

ψ2
σ,A

B
= ψ2

σ,H
A

+ ψ2
σ,H

B
− 2ρH

A
,H
B
ψσ,H

A
ψσ,H

B
.

Then, Definition 1.1 of risk factors implies that ψσ,H
A

= ωσ,H
A

+ ψ̄σ,H
A
, which

proves the corollary.

Consequently, all the quantities which concern the cross rates are uniquely de-
termined by the foreign exchange rates:

Remark 2.6 The risk factors which are used to model currency risk are

• the changes in the values of the foreign exchange rates (i.e. ωH
A
, ωH

B
)

• the changes in the volatilities of the foreign exchange rates (i.e. ωσ,H
A
, ωσ,H

B
).

Hence, when a scenario ω is evaluated in order to determine v(ω), the implied val-
ues of the cross rates and their volatilities have to be considered in the valuation
of the portfolio.
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Example 2.7 Assume that we have a portfolio depending on two foreign curren-
cies A,B and that H denotes the reporting currency. The expected outcomes of
the foreign exchange rates at the end of the holding period are

ψ̄H
A

= 1.20, ψ̄H
B

= 0.80

and the expected volatilities are

ψ̄σ,H
A

= 0.15, ψ̄σ,H
B

= 0.15.

Furthermore, we suppose that the correlation between the two rates is ρH
A
,H
B

=

0.25. If the portfolio is valued for the scenario

ω = (ωH
A
, ωH

B
, ωσ,H

A
, ωσ,H

B
) = (0.05,−0.05, 0.05,−0.05),

then not only the instruments depending on the foreign exchange rates ψH
A
, ψH

B

and the volatilities ψσ,H
A
, ψσ,H

B
have to be considered, but also all positions which

depend on the cross rate A
B
. In fact, Lemma 2.3 implies that

ψA
B

=
−0.05 + 0.80

0.05 + 1.20
= 0.60,

and

ψσ,A
B

=
√

(0.05 + 0.15)2 + (−0.05 + 0.15)2 − 2 · 0.25(0.05 + 0.15)(−0.05 + 0.15)

= 0.20.

by Corollary 2.5.

2.3 Equity Risk

In the equity markets, we distinguish two main sources of risk:

• changes of equity prices

• changes in the volatilities of equity prices.

2.3.1 Equity Price Risk

This section shows how to model the general market risk of equity positions (i.e.
the risk which is due to overall movements in one market). The state of a market
will be represented by a market index I. The relationship between the individual
assets and this index is derived from the capital asset pricing model (CAPM)9:

9See Copeland and Weston (1995), pp. 195.
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Definition 2.8 The return of asset j during the holding period of length T is

rj =
ψj−ψ0

j

ψ0
j

, where ψ0
j is the value of the asset at the beginning of the holding

period and ψj its value at the end of the period. Similarly, rI =
ψI−ψ0

I

ψ0
I

is the

return of the market index I.

Assumption 2.9 According to Section 1.2.2, it is assumed that that the returns
are normally distributed: rj ∼ N (µj, σ

2
j ) and rI ∼ N (µI , σ

2
I ) with covariance

Cov(rj, rI) = σj,I .

The capital asset pricing model pretends a linear relationship between the return
of an individual asset rj and the return of the market index rI :

rj = aj + bjrI + εj, (2.1)

where aj and bj are constants and εj is a random variable with mean 0 and
Cov(rI , εj) = 0. Thus, εj plays the role of a random perturbation which is related
to asset j and independent of the market index. Of course, the relationship
between rj and rI is strongest when the perturbation εj has a minimal effect:

Theorem 2.10 If rj = aj + bjrI + εj, then εj is normally distributed and it has
minimal variance if bj =

σj,I

σ2
I
.

Proof: Since rj and rI are normally distributed, εj = rj − aj − bjrI is also
normally distributed, i.e. εj ∼ N (0, σ2

εj
). Formula (2.1) implies that that

σ2
εj

= σ2
j + b2

jσ
2
I − 2bjσj,I .

It is easy to verify that this expression is minimized if bj =
σj,I

σ2
I

; in this case,

σ2
εj

= σ2
j −

σ2
j,I

σ2
I

is the minimal variance.10

Corollary 2.11 If rj = aj + bjrI + εj and εj has minimal variance, then aj =
µj − σj,I

σ2
I
µI .

Proof: In Theorem 2.10, bj and σ2
εj

have been determined uniquely. Taking the

expectation of formula (2.1), it follows that aj = µj − σj,I

σ2
I
µI .

Hence, we have determined all parameters of an optimal model of the form (2.1).
It remains to make the link with the risk factors, i.e. we have to express the
equity price ψj as a function of risk factor ωI :

10The quantity b2jσ
2
I is usually called systematic risk , whereas σ2

εj
is called unsystematic risk .
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Theorem 2.12 If rj = aj + bjrI + εj with εj ∼ N (0, σ2
εj

) and Cov(rI , εj) =

0, then there exist constants αj, βj and a random variable ηj ∼ N (0, σ2
ηj

) with
Cov(ωI , ηj) = 0 such that

ψj = αj + βjωI + ηj.

Proof: Rewriting formula (2.1) leads to
ψj−ψ0

j

ψ0
j

= aj + bj
ψI−ψ0

I

ψ0
I

+ εj and hence

ψj = (1 + aj)ψ
0
j + bj

ψ0
j

ψ0
I

(ψI − ψ0
I ) + ψ0

j εj.

Using Definition 1.1 of risk factors ωI = ψI − ψ̄I , it follows that

αj = (1 + aj)ψ
0
j + bj

ψ0
j

ψ0
I

(ψ̄I − ψ0
I )

βj = bj
ψ0
j

ψ0
I

ηj = ψ0
j εj.

Since we know that E(ηj) = 0, we have an explicit relation between changes in
the market index and the price of asset j. Similarly, there exists a relationship
between the volatility ψσ,j of asset j and the volatility ψσ,I of the market index:

2.3.2 Equity Volatility Risk

Theorem 2.13 Let r̂j ∼ N (µ̂j, σ̂
2
j ) denote the annualized return of asset j and

r̂I ∼ N (µ̂I , σ̂
2
I ) the annualized return of the market index I. If r̂j = âj + b̂j r̂I + ε̂j

with Cov(r̂I , ε̂j) = 0, then

ψσ,j =
√

b̂2
j(ωσ,I + ψ̄σ,I)2 + σ̂2

ε̂j
,

where ψ̄σ,I is the expected value of the market index volatility and ωσ,I is the
corresponding risk factor.

Proof: Taking the variance on both sides of r̂j = âj + b̂j r̂I + ε̂j we get

ψ2
σ,j = b̂2

jψ
2
σ,I + σ̂2

ε̂j
. Then, the definition of the risk factors: ωσ,I = ψσ,I − ψ̄σ,I

leads immediately to the result.

The relationships between individual assets and the market index have been
established in Theorems 2.12 and 2.13. Thus, we have been able to model the
general equity risk of a market with only two risk factors: ωI for the market index
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and ωσ,I for its volatility. It should be noticed that it is easily possible to refine
this model by adding supplementary risk factors for specific market sectors.

Example 2.14 Over a ten–day holding period, the return rj of stock j is a
random variable with rj ∼ N (0, 0.02) and the market index I has a return
rI ∼ N (0, 0.01) with Cov(rj, rI) = 0.005.

According to Theorem 2.10 and Corollary 2.11, the optimal parameters of the
model rj = aj + bjrI + εj are

aj = 0, bj =
0.005

0.01
= 0.5.

Assume that the stock price at the beginning of the holding period is ψ0
j = 250,

the market index is ψ0
I = 100 and its expected value at the end of the period is

ψ̄I = 110. Then, Theorem 2.12 implies that the value of the stock ψj depends
linearly on the risk factor of the market index: ψj = αj + βjωI , where

αj = 250 + 0.5
250

100
(110− 100) = 262.5, βj = 0.5

250

100
= 1.25.

Hence, the scenario ωI = −2 implies a stock price of ψj = 262.5+1.25(−2) = 260.

What concerns volatilities, we will assume that the annualized returns can be
modelled as r̂j = âj + b̂j r̂I + ε̂j. By Theorem 2.10, the perturbation εj ∼ N (0, σ2

εj
)

has a variance of

σ2
εj

= 0.02− 0.0052

0.01
= 0.0175.

Under the hypothesis of geometric Brownian motion, the ‘square root of time rule’
leads to σ̂2

εj
= 0.0175(250

10
) = 0.4375 (where it is assumed that a year counts 250

trading days).

Hence, if the expected volatility of the index is ψ̄σ,I = 0.55 at the end of the
ten–day holding period and if ωσ,I = −0.05, then Theorem 2.13 implies that

ψσ,j =
√

0.52(−0.05 + 0.55)2 + 0.4375 =
√

0.5.

2.4 Interest Rate Risk

The problem in dealing with interest rate risk is that a single interest rate of a
market does not exist. Indeed, the yield of a particular instrument may depend
on its maturity, possible call features, coupon payments, the credit rating of the
issuer, etc.

In the sequel, spot rate refers to the current market yield of a default–free zero–
coupon instrument and the spot rate curve is the graphical depiction of the
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relationship between spot rates and their maturities. This curve11, together with
its volatility, can be used to price any default–free instrument.12

The price of non default–free instruments additionally depends on the credit
rating of their issuers.13 The lower their rating, the higher the risk premium that
has to be paid. This is reflected by higher spreads , i.e. by increasing differences
between the spot rate and zero–coupon rates of rating classes of lower quality (cf.
Figure 2.1).14

default-free
AAA
AA

A

Maturity

Yield

Figure 2.1: Term structures of zero–coupon yields

In connection with interest rate related instruments we thus emphasize on the
following types of general interest rate risk:

• yield curve risk, being the risk due to changes of the spot rate curve, i.e.
its level and its shape

• credit spread risk, the risk due to changes in the zero–coupon rate of a
particular rating class, relative to the corresponding spot rate

• yield curve volatility risk, i.e. the risk due to changes in the volatilities of
the spot rates.

2.4.1 Yield Curve Risk

The representation of the spot rate curve as a finite set of rates of differing
maturities, as used in RiskMetrics15 or in the BIS proposal16, is not appropriate

11Alternatively, the forward rate curve or the swap rate curve might be used instead of the
spot rate curve since they are all equivalent in the sense that each curve can be constructed
from each other.

12There exist several methods to construct the spot rate curve from observed bond prices,
cf. Vasicek and Fong (1982), pp. 339.

13For example, Standard & Poor designate the highest credit quality of corporate securities
by AAA, followed by AA, A, BBB, BB, B and CCC.

14See Fabozzi (1993), pp. 209.
15See RiskMetrics (1996), pp. 107.
16See BIS (1996b), pp. 9.
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in the Maximum Loss approach. With such a model, the choice of an interest
rate scenario might define a curve whose shape is not in accord with empirically
observed rates.17

Instead of modelling the rates of specific maturities, it is preferable to model
changes of the whole curve. This can be achieved by using a generic basis, as the
one shown in Figure 2.2.

Shift Twist Hump

Maturity axis

Figure 2.2: Elementary changes in the spot rate curve

Example 2.15 Figure 2.2 shows a basis which is made up of three different
modifications of the spot rate curve:

• parallel shifts

• twists, i.e. a flattening or steepening of the yield curve

• humps, i.e. a change in the curvature of the spot rate curve.

This way, we have three risk factors (ω1, ω2, ω3), each one representing a modi-
fication of the whole curve. Hence, an interest rate scenario consists of a linear
combination of the three basic changes. It defines a new spot rate curve, for which
the portfolio can be valued to determine the corresponding P&L v(ω).

According to Assumption 1.12, each of the yield curve risk factors ωi is normally
distributed with mean zero. If ωi = 0, this means that there are no deviations
from the expected outcome and therefore the corresponding curve coincides with
the abscissa.

Remark 2.16 This framework represents a yield curve model with given initial
term structure. As in the HJM approach18, the drifts have to be chosen appropri-
ately to guarantee an arbitrage–free model, i.e. the expected outcome of the the
yield curve at time T has to match with the distribution of the yield curve risk
factors.

17For example, a scenario where the 3 year and 5 year rates increase, but the 4 year rate
decreases, is economically not very meaningful.

18See Heath et al. (1992), pp. 77.
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Compared to a time bucketing approach, where each time–band has its own risk
factor, this model has the advantage that the number of risk factors is small and
no mapping of the instruments into a sequence of cash flows19 is required.

Example 2.17 Let ω1 be the risk factor of the parallel shifts, ω2 of the twists and
ω3 of the humps, as it is shown in Figure 2.2. Then, the scenario ω = (3

4
, 1

2
, 1

4
)

reflects an increase in the medium– and long–term rates, whereas the short–term
rates remain almost unaffected, as Figure 2.3 shows.

1

-1

[SD] 1

-1

[SD]
ω1

ω2

ω3

Figure 2.3: Example of interest rate scenario

Rather than choosing an arbitrary basis of yield curve changes (as in Example
2.15), it may be advantageous to use statistical techniques to determine an ‘op-
timal’ basis. For example, principal components analysis (PCA)20 allows to de-
termine an uncorrelated set of curves which minimize the unexplained variability,
and may therefore be appropriate for risk measurement purposes. In fact, em-
pirical studies have shown that the first three principal components typically
account for 95–99 percent of the total variance.21

2.4.2 Credit Spread Risk

To capture the changes in the spreads, we will use risk factors which represent
moves of the whole spread curve. As before, either an arbitrary basis of ele-
mentary modifications might be chosen, or a basis constructed with statistical
techniques.

Example 2.18 A very rough model would have one risk factor for the spread
changes of each credit class, e.g. (ωA, ωB, ωC) for the classes A,B and C. Rat-
ing specific coefficients κ ≥ 0 would allow to model differing spread propor-
tions for each individual credit rating by taking, for example, changes equal to
κAAAωA, κAAωA and ωA for the credit qualities AAA, AA and A.

19In the RiskMetrics approach and the BIS Standardized Methodology, the instruments need
to be mapped in a preliminary step into a sequence of cash flows at prescribed vertices, cf. BIS
(1996b), pp. 11 and RiskMetrics (1996), pp. 108.

20See Jackson (1991).
21See Litterman and Scheinkman (1991), pp. 54.
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2.4.3 Yield Curve Volatility Risk

As is the case for the interest rates themselves, also their volatilities have a term
structure. Obviously, changes in this term structure can be captured by the same
models that have been used in Section 2.4.1 for modelling yield curve risk.

Example 2.19 If it is assumed that the changes in the volatility of all credit
ratings are identical, it is sufficient to have one generic basis of volatility curve
modifications (cf. Example 2.15), which is used for all credit classes simultan-
eously.

To summarize, risk factors that represent modifications of the entire term struc-
ture lead to compact models, which reflect all relevant interest rate risks in a
consistent manner.

2.5 Commodity Risk

By commodities we understand physical products, such as agricultural products,
precious metals or minerals, which can be traded on a secondary market. These
products are typically traded as future transactions (forwards or futures). Con-
sequently, there exists a term structure of commodity prices and the following
types of risk have to be distinguished:

• commodity price risk: the risk due to movements in commodity spot prices

• commodity volatility risk: the risk owing to changes in the annualized volat-
ility of a commodity

• commodity forward gap risk: the risk that forward and futures prices22 may
change for reasons other than changes of the interest rates.

2.5.1 Commodity Price Risk and Volatility Risk

To model the commodity price risk of commodity i, we use one risk factor ωi

which reflects the changes in the price ψi. The changes in the volatility ψσ,i of
commodity i can be represented by a risk factor ωσ,i.

2.5.2 Commodity Forward Gap Risk

Let us assume that the price Ft of a future with maturity t is of the form

Ft = S0 exp [(rt + ct)t],

22Cox et al. (1981) show indeed that forward prices and futures prices are equal provided
that interest rates are constant.
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where S0 is the spot price of the commodity, rt is the risk–free interest rate and
ct the commodity specific yield . If the forward price is expressed in this way, it
becomes obvious that the changes of the forward price which are neither due to
changes of the spot price nor to changes of the interest rate rt are caused by
changes in the commodity specific yield ct.
Hence, it is natural to use a model which is analogous to the yield curve risk
model of Section 2.4.1: modifications of the commodity specific yield curve are
expressed as a linear combination of elementary curve changes.

Example 2.20 In a simplistic model, we could have for each commodity a single
risk factor which reflects a parallel shift in the commodity specific yield curve.
More elaborated models would have a richer basis, such as the one presented in
Example 2.15.
Assume that ω4 is the risk factor of the parallel shifts in the commodity specific
yield curve, ω5 of the twists and ω6 of the humps. Then, the commodity specific
yield scenario (ω4, ω5, ω6) = (−1

4
,−1

4
, 0) leads, together with the yield curve scen-

ario (ω1, ω2, ω3) = (3
4
, 1

2
, 1

4
) of Example 2.17, to an overall change in (rt + ct)

which is shown on the right of Figure 2.4.

1

-1

1

-1

[SD] [SD]

Figure 2.4: Overall effect of combined IR and CO scenarios
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Chapter 3

Fundamentals of Maximum Loss

3.1 General Relationship to VaR

Although VaR and ML have apparently different formal definitions1 and the
Maximum Loss approach has, with its trust region T , a supplementary degree of
freedom, there exists a strong relationship between the two methods:

Theorem 3.1 Let T be an arbitrary feasible trust region (i.e. a closed subset of
O which contains the scenario ω = 0) with P(T ) = α. Then, for every continuous
P&L function v(ω), the relation ML(α) ≤ VaR(α) holds.

Proof: Denote by U the set of active risk factors for VaR

U = {ω ∈ O | v(ω) ≤ VaR(α)},
which is a closed set since v(ω) is a continuous function. Two cases have to be
distinguished:
If U ∩ T �= ∅, simply choose any scenario ω∗ ∈ U ∩ T , then obviously ML(α) ≤
v(ω∗) ≤ VaR(α).
On the other hand, if U ∩ T = ∅, then define W = (T ∪ U)C . Note that

1. W is an open, nonempty set since T and U are both closed

2. P(T ) + P(U) = α + (1 − α) = 1 implies that P(W) = 0, hence v(ω) =
0,∀ω ∈ W by Assumption 1.6.

Since the set of realizable scenarios O ⊆ IRM is connected by Assumption
1.2 and U is closed, there exists a sequence {ω(1), ω(2), . . . } ⊂ W such that
limi→∞ ω(i) = ω∗ ∈ U (in the Euclidean metric). The continuity of the P&L
function v implies that v(ω∗) = limi→∞ v(ω(i)) = 0 and consequently VaR(α) ≥ 0.
The fact that any feasible trust region T holds the scenario ω = 0 and v(0) = 0

1See Definitions 1.14 and 1.39.
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then leads to ML(α) ≤ 0 ≤ VaR(α).

Remark 3.2 It follows from the previous proof that

max
U⊆O:P(U)=α

U closed

min
ω∈U

v(ω) = VaR(α).

In other words, the maximum ML over all generalized trust regions (in the sense
that the scenario ω = 0 needs not to be an element of U , contrarily to Definition
1.39) is equal to the Value–at–Risk for the same confidence level. More precisely,

argmax
U⊆O:P(U)=α

U closed

min
ω∈U

v(ω) = {ω | v(ω) ≥ VaR(α)},

which means that the generalized trust region which produces to the highest ML
is equal to the closure of the complement of the set of active risk factors U∗ =
{ω | v(ω) ≤ VaR(α)} for VaR.

Thus, Maximum Loss is a risk measure which is always more conservative than
VaR, independent of the risk factor distribution and the trust region which have
been chosen.

Example 3.3 Take a portfolio consisting of one linear instrument vl(ω) = −ω,
whose underlying risk factor ω ∼ N (0, 1). For a confidence level α = 95%, VaR
is -1.64. The Maximum Loss however depends heavily on the choice of the trust
region T , as Figure 3.1 shows.

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

P&L P&L P&L

Risk Factor 

Trust Region   τ3Trust Region   τ2Trust Region   τ1

Figure 3.1: Different choices of trust regions

• For trust region T1 =]−∞, 1.64]: ML(α) = −1.64.

• For trust region T2 = [−1.96, 1.96]: ML(α) = −1.96.

• For trust region T3 = [−1.64,∞[: ML(α) = −∞.

In any of these cases, the relation ML(α) ≤ VaR(α) holds.
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Theorem 3.1 has important consequences for risk management: if the portfolio
is restructured for the worst case scenario ω∗ such that the new P&L v(ω∗)
becomes greater than VaR — without reducing the P&L for any of the other
scenarios — then we can be sure that the VaR of the new portfolio will be closer
to 0. Consequently, the ML approach can be used to determine VaR reducing
transactions.

3.2 Trust Regions

In Section 1.5, it has been said that any closed subset T ⊆ O with 0 ∈ T and
probability P(T ) = α is a feasible trust region. For multinormally distributed
risk factors ω ∼ N (0,Σ), there exists a particularly appealing choice of T :

Lemma 3.4 For multinormally distributed risk factors ω ∼ N (0,Σ), the quant-
ity ωTΣ−1ω is χ2 distributed with M degrees of freedom.

Proof: Let U be the Cholesky decomposition of Σ = UTU , then

Cov(U−Tω) = E[(U−Tω)(U−Tω)T ] = U−TCov(ω)U−1 = I.

Hence, (U−Tω) ∼ N (0, I) and ωTΣ−1ω = (U−Tω)T (U−Tω) is the sum of M
squared, independent standard normal variables.

Theorem 3.5 If ω ∼ N (0,Σ), the choice T = {ω ∈ IRM | ωTΣ−1ω ≤ cα} is a
feasible trust region; cα is the α–quantile of a χ2 distribution with M degrees of
freedom.

Proof: T is a closed set which holds the scenario ω = 0 and has probability
P(T ) = α.

Geometrically, this choice defines an M–dimensional ellipsoid which is centered
at the origin. Besides being symmetrical, this trust region has another important
property:

Corollary 3.6 If ω ∼ N (0,Σ), then T = {ω ∈ IRM | ωTΣ−1ω ≤ cα} is the trust
region of minimal volume.

Proof: Since the risk factors are normally distributed, their density is f(y) =
ϑ exp

(
−1

2
yTΣ−1y

)
, where ϑ = 1

(2π)M/2
√

det Σ
> 0. The trust region T is the set

{y ∈ IRM | yTΣ−1y ≤ cα} =

{
y ∈ IRM | exp

(
−1

2
yTΣ−1y

)
≥ exp

(
−1

2
cα

)}

=

{
y ∈ IRM | f(y) ≥ ϑ exp

(
−1

2
cα

)}
,
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which shows that T is the set of risk factors with highest density (i.e. f(y) is
greater than a constant). Since the density is a nonnegative function, we conclude
that for every U ⊂ IRM with Vol(U) = Vol(T ) the relation P(U) ≤ P(T ) = α
holds. Thus, T is the trust region of minimal volume.

These very special characteristics justify to fix the choice of the trust region once
and for all:

Assumption 3.7 In the sequel, we will always take the trust region T = {ω ∈
IRM | ωTΣ−1ω ≤ cα}, where cα is the α–quantile of a χ2 distribution with M
degrees of freedom.

3.2.1 Relative Coordinates

So far, the changes in market rates have always been measured in absolute, i.e.
physical units. In some cases, it might be advantageous to express the market
moves in units of standard deviations:

Definition 3.8 Let Σ = Cov(ω) be the covariance matrix of the risk factors.
The matrix of standard deviations V is the diagonal matrix defined by

V = diag(
√

(Σ)1,1, . . . ,
√

(Σ)M,M).

Lemma 3.9 If Cov(ω) = Σ, then R = V −1ΣV −1 is the correlation matrix of the
risk factors.

Proof: By definition, the correlation between ωi and ωj is

Corr(ωi, ωj) =
(Σ)i,j√

(Σ)i,j
√

(Σ)i,j
= (R)i,j,

for 1 ≤ i, j ≤ M .

Definition 3.10 The standardized risk factors ω are defined as ω = V −1ω.

This way, ωi expresses market rate changes which are measured in units of the
standard deviation of risk factor ωi. We will show that ML can be calculated in
either of the two systems — but, in general, computations in relative coordinates
provide more flexibility:

Lemma 3.11 If ω ∼ N (0,Σ), the sets U1 = {ω ∈ IRM | ωTΣ−1ω ≤ cα} and
U2 = {ω ∈ IRM | ωTR−1ω ≤ cα} are identical.
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Proof: For each ω we have ωTΣ−1ω = ωTV −1R−1V −1ω = ωTR−1ω.

To calculate ML for the standardized risk factors, the objective function has to
be adapted:

Definition 3.12 Take a quadratic portfolio vq(ω) = 1
2
ωTGω + gTω. The stand-

ardized P&L function is vq(ω) = 1
2
ωTGω + gTω, where G = V GV and g = V g.

Theorem 3.13 ω∗ is solution to the ML problem ML(α) = minωT Σ−1ω≤cα
vq(ω)

if and only if ω∗ = V −1ω∗ is solution to ML(α) = minωTR−1ω≤cα
vq(ω).

Proof: Lemma 3.11 shows that ω∗ is feasible for the problem ML(α) if and
only if ω∗ is feasible for ML(α). Moreover, for every ω ∈ IRM the relations
ωTGω = ωTV −1V GV V −1ω = ωTGω and gTω = gTV V −1ω = gTω hold.

Hence, there is no difference whether the original problem ML(α) or the stand-
ardized problem ML(α) is solved. However, the use of standardized risk factors
has the advantage that not all instruments of the portfolio need to have the same
holding period T :

Example 3.14 Suppose that the standard deviation σT for a T day holding period
follows the square root of time rule of formula (1.5), i.e. σT = σ

√
T . Take two

instruments i and j depending on the same risk factor ωk. If instrument i has a
holding period of Ti days and instrument j of Tj days, then an upward move of
ωk = 2 standard deviations corresponds to an increase of ωk(i) = 2σ

√
Ti units for

instrument i and of ωk(j) = 2σ
√

Tj units for instrument j.

3.3 Linear Portfolios

As for Value–at–Risk, it is possible to obtain an analytic expression of ML for
linear portfolios:

Theorem 3.15 The Maximum Loss of a linear portfolio vl(ω) = aTω is

ML(α) = −√cα
√
aTΣa and the worst case scenario is ω∗ = −

√
cα√

aT Σa
Σa.

Proof: We have to solve the minimization problem

ML(α) = min vl(ω)

s.t. h(ω) ≤ 0, (3.1)

where h(ω) = ωTΣ−1ω − cα. It is easy to verify that ω∗ = −
√
cα√

aT Σa
Σa and

µ =
√
aT Σa

2
√
cα

satisfy the Kuhn–Tucker conditions
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∇vl(ω
∗) = −µ∇h(ω∗)

µh(ω∗) = 0

h(ω∗) ≤ 0

µ ≥ 0.

Since vl(ω) is linear and h(ω) is convex, this implies that ω∗ is the global
optimum of problem (3.1).

The expression of ML(α) = −√cα
√
aTΣa is very similar to Delta–Normal Value–

at–Risk VaR(α) = −zα
√
aTΣa. The only difference lies in the scaling factor√

cα vs. zα. This means that ML and VaR have a constant relation, which
is independent of the portfolio. However, the ratio depends on the confidence
level α and on the number M of risk factors, since cα is the α–quantile of a χ2

distribution with M degrees of freedom:

M = 2 M = 5 M = 10 M = 50

α = 90.0% 1.67 2.37 3.12 6.20
α = 95.0% 1.49 2.02 2.60 5.00
α = 97.5% 1.39 1.83 2.31 4.31
α = 99.0% 1.30 1.67 2.07 3.75

Table 3.1: Ratios rα,M of ML/VaR

The fact that the ratios rα,M of ML/VaR depend on the number M of risk factors
is due to Definition 1.39 of a trust region T as a subset of IRM with P(T ) = α:
the more dimensions the scenario space has, the larger T has to be chosen in
order to cover a probability of α.2

At this point, it should be noted that the computation of the worst case scenario
ω∗ = −

√
cα√

aT Σa
Σa requires no other information(except the constant cα) than the

information used in the Delta–Normal VaR computation; the identification of the
worst outcome is for free.

2In practical applications, this property might be unwanted. In fact, the dependence on
the number of risk factors implies that the ML of a model which contains ‘empty’ risk factors
is different from the ML of the same portfolio where the superfluous risk factors have been
removed. A way to overcome this problem is to use the coefficients rα,M of Table 3.1 as
standardization factors for ML∗(α) = ML(α)

rα,M
. This choice implies in particular that ML∗(α) =

VaR(α) for linear portfolios.
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3.4 Quadratic Portfolios

Whereas VaR can only be computed efficiently for linear portfolios,3 it is pos-
sible to calculate ML for quadratic portfolios vq(ω) = 1

2
ωTGω + gTω with a fast

algorithm, the so–called Levenberg–Marquardt algorithm. In the sequel we show
how the algorithm can be used to calculate ML and explain the principles of the
optimization procedure.

The Levenberg–Marquardt algorithm allows to calculate numerically the global
minimum of a quadratic function in a ball. Since the trust region T has ellipsoidal
form, it has first to be transformed into spherical form.

Definition 3.16 Let ω ∼ N (0,Σ) and denote the Cholesky decomposition of the
covariance matrix by Σ = UTU . The transformed risk factors are defined as
ω̂ = U−Tω.

Lemma 3.17 The two sets U1 = {ω ∈ IRM | ωTΣ−1ω ≤ cα} and U2 = {ω̂ ∈
IRM | ω̂T ω̂ ≤ cα} are identical.

Proof: For every ω ∈ IRM we have ωTΣ−1ω = ωTU−1U−Tω = ω̂T ω̂.

Hence, the trust region can be transformed by a linear function into a ball. It
remains to adapt the objective function:

Definition 3.18 Let vq(ω) = 1
2
ωTGω + gTω be a quadratic portfolio. The trans-

formed P&L function is v̂q(ω̂) = 1
2
ω̂T Ĝω̂ + ĝT ω̂, where Ĝ = UGUT and ĝ = Ug.

Theorem 3.19 The scenario ω∗ = UT ω̂∗ is the global solution to the problem
minωT Σ−1ω≤cα

vq(ω) if and only if ω̂∗ is the global solution to minωT ω̂≤cα
v̂q(ω̂).

Proof: Lemma 3.17 proves that ω∗ is feasible if and only if ω̂∗ is feasible. Further-
more, the two functions are identical since ω̂T Ĝω̂ = ωTU−1UGUTU−Tω = ωTGω
and ĝT ω̂ = gTUTU−Tω = gTω, for every ω ∈ IRM .

Consequently, the original quadratic ML problem has been restated as the min-
imization of a quadratic function v̂q(ω̂) in a ball:

ML(α) = min
1

2
ω̂T Ĝω̂ + ĝT ω̂

s.t. ω̂T ω̂ ≤ cα. (3.2)

3See Section 1.3.1.
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3.4.1 The Levenberg–Marquardt Algorithm

The Levenberg–Marquardt algorithm will be the main ingredient of all numerical
Maximum Loss applications of Chapter 4 because it allows to determine the global
solution to problem (3.2) in an efficient way. The key idea behind this algorithm is
to search for a one–dimensional variable ν instead of the M–dimensional scenario
ω:

Theorem 3.20 ω̂∗ is a global solution to (3.2) if and only if there exists ν∗ ∈ IR
such that

(Ĝ + ν∗I) is positive semidefinite (3.3)

and the following conditions hold:

(Ĝ + ν∗I)ω̂∗ = −ĝ (3.4)

ν[cα − (ω̂∗)T ω̂∗] = 0 (3.5)

ν∗ ≥ 0. (3.6)

Moreover, if ν∗ exists, then it is unique, and if (Ĝ+ ν∗I) is positive definite, then
ω̂∗ is unique.

Proof: The complete proof is given in Fletcher (1987), pp.101.

In the following, it is explained how Theorem 3.20 can be used to solve problem
(3.2) numerically.
Suppose for a moment that we knew an orthonormal basis consisting of the
eigenvectors of Ĝ, i.e. B = {ê1, . . . , êM} with corresponding eigenvalues λ1 ≤
. . . ≤ λM .4 Then, we could express the vectors ĝ and ω̂ in this basis: ĝ =∑M

i=1 αiêi and ω̂ =
∑M

i=1 βiêi, where the coefficients βi are the values we would
like to determine. Relation (3.4) implies that βi = − αi

λi+ν∗ for i = 1, . . . ,M . If
we consider ω̂ as a function of ν we get

‖ω̂(ν)‖2 =
M∑
i=1

(
αi

λi + ν

)2

. (3.7)

For ν ≥ −λ1, the function ‖ω̂(ν)‖2 is decreasing with limν→∞ ‖ω̂(ν)‖2 = 0.
Conditions (3.3) and (3.6) imply that ν ≥ max(−λ1, 0). This phenomenon is
represented in Figure 3.2.
Two cases could arise:

4An orthonormal basis B exists because the matrix Ĝ ∈ IRM×M is symmetric.
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Figure 3.2: Analysis of ‖ω̂(ν)‖2

1. ν∗ = 0: By condition (3.3), Ĝ is positive semidefinite, and from equation
(3.4) we conclude that ω̂∗ = −Ĝ−1ĝ is the solution.

2. ν∗ > 0. Let ν1 < ν2 be two candidates for ν∗. Equation (3.4) implies that
ω̂i = −(Ĝ + νiI)

−1ĝ, i = 1, 2. From (3.7) we know that ‖ω̂1‖2 > ‖ω̂2‖2.
But this means that we can apply a bisectionning method with starting
values ν1, ν2 such that ‖ω̂(ν1)‖2 ≤ cα ≤ ‖ω̂(ν2)‖2 to find the optimal value
ν∗ which satisfies (3.5), i.e. ‖ω̂(ν∗)‖2 = cα.

Obviously, neither the eigenvectors êi of Ĝ nor its eigenvalues λi are required to
implement such a bisectionning algorithm. Indeed, it is possible to implement
the algorithm such that it solves the problem in polynomial time:

Theorem 3.21 The number of arithmetic operations required to calculate an
ε–approximation5 of the quadratic ML problem minω̂T ω̂≤cα

v̂q(ω̂) is bounded by
O(M3 log(1

ε
)).

Proof: A rigorous proof is given in Fu et al. (1996).

Technical details regarding an efficient implementation are described in Dennis
and Schnabel (1996).

Remark 3.22 It is important to note that the problem (3.2) is the only noncon-
vex global optimization problem for which a polynomial time algorithm is known.

5Let vmin and vmax denote the exact minimum and maximum over the feasible domain.
Then, ω∗ is an ε–approximation to the minimization problem if v(ω∗)−vmin

vmax−vmin
≤ ε.
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Example 3.23 If the Levenberg–Marquardt algorithm is applied to the portfolio
of Example 1.17, the worst case scenario ω∗ for a confidence level of α = 90%
turns out to be

Risk Factor 1 = −2.796

Risk Factor 2 = −1.711

Risk Factor 3 = −3.395

Risk Factor 4 = −2.200

Risk Factor 5 = −2.494

Risk Factor 6 = −1.766

Risk Factor 7 = −0.844,

and the Maximum Loss is 2786.36 units. If we look at Figure 1.2, we notice that
the correlation structure forces risk factors 2, 6 and 7 to move into the profitable
region in order to maximize the overall loss of the portfolio.
The worst case scenario ω∗ does not only tell us for which changes of market
rates the portfolio is most exposed, it is also an important information for the risk
manager who has to reduce the overall risk of the portfolio. According to Section
3.1, the relation ML ≤ VaR holds for every portfolio. Hence, restructuring the
portfolio for the worst case scenario ω∗, such that v(ω∗) becomes greater than
VaR, will definitely reduce VaR.

3.4.2 Sensitivity Analysis

The effect of perturbations in the parameters G, g,Σ and cα to the solution of
the quadratic ML problem

ML(α) = min
1

2
ωTGω + gTω

s.t. ωTΣ−1ω ≤ cα (3.8)

can be estimated without having to resolve the new optimization problem.

Definition 3.24 Let ω∗ be the solution to the quadratic ML problem (3.8), then
ω∗(ε) denotes the solution to the perturbed problem

ML(α) = min
1

2
ωTGω + gTω

s.t. ωTΣ−1ω ≤ cα + ε. (3.9)
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Remark 3.25 From the discussion of the Levenberg–Marquardt algorithm of Sec-
tion 3.4.1 it follows that the one–dimensional variable ν depends continuously on
ε (cf. Figure 3.2). Thus, Theorem 3.20 implies that the worst case scenario ω∗

is a continuous function ω∗(ε).

This allows us to state the following theorem:

Theorem 3.26 The sensitivity of ML to the perturbed problem problem is

∂vq(ω
∗(ε))

∂ε
= −µ∗,

where the Lagrange multiplier is µ∗ = ‖Gω∗+g‖
2‖Σ−1ω∗‖ if ωTΣ−1ω = cα and µ∗ = 0

otherwise.

Proof: Let h(ω) = ωTΣ−1ω − cα be the trust region constraint and L(ω, µ) =
v(ω) + µh(ω) the Lagrangian function of problem (3.9). It is easy to verify that
µ∗ satisfies the Kuhn–Tucker conditions

∇ωL(ω∗, µ∗) = 0

µ∗h(ω∗) = 0

h(ω∗) ≤ 0

µ∗ ≥ 0.

If µ∗(ε) is the Lagrange multiplier of the perturbed problem, the second Kuhn–
Tucker condition µ∗h(ω∗) = 0 implies that vq(ω

∗(ε)) = L(ω∗(ε), µ∗(ε)). It follows
that

∂vq(ω
∗(ε))

∂ε
=

∂L(ω∗(ε), µ∗(ε))

∂ε
= −µ∗.

Theorem 3.26 allows to analyze the effect of small changes in Σ and cα on the
solution of the ML problem:

Corollary 3.27 If the trust region is expanded by ∆cα to become T = {ω |
ωTΣ−1ω ≤ cα+∆cα}, then the quadratic ML is increased by ∆vq(ω

∗) = −µ∗∆cα.

Proof: It is sufficient to set ε = ∆cα in Theorem 3.26.

We will make use of this result later in Section 4.1.1 when we calculate ML for
a series of expanding trust regions: Corollary 3.27 provides an efficient way to
generate good interpolations.
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Corollary 3.28 If the covariance matrix Σ changes to Σ̃, the effect on ML is
∆vq(ω

∗) = µ∗(ω∗)T [Σ̃−1 − Σ−1]ω∗.

Proof: If the covariance matrix becomes Σ̃, the constraint function
changes to h(ω) = ωT Σ̃−1ω − cα. This corresponds to a perturbation of
ε = (ω∗)T (Σ−1 − Σ̃−1)ω∗ in Theorem 3.26.

The effect of changes in the objective function vq(ω) can be estimated by means
of ordinary calculus:

Lemma 3.29 If the quadratic function vq(ω) = 1
2
ωTGω + gTω becomes v′q(ω) =

1
2
ωT (G+∆G)ω+(g+∆g)Tω, then ML is augmented by ∆vq(ω

∗) = 1
2
(ω∗)T∆Gω∗+

∆gTω∗.

Proof: Differentiating the objective function vq(ω) = 1
2
ωTGω+gTω with respect

to the coefficients gives ∂vq

∂(G)i,j
= 1

2
ωiωj and ∂vq

∂gi
= ωi. Since the global optimum

is located at ω∗, the result follows immediately.

This result can be used to update quickly ML after new instruments have been
added to the portfolio. It allows also to examine the effect of candidate trades
and to quickly check whether the risk remains within its limits.

Example 3.30 If we have a linear portfolio vl(ω) = aTω, we know from The-

orem 3.15 that the worst case scenario is ω∗ = −
√
cα√

aT Σa
Σa. In accordance

to Lemma 3.29, a new trade with risk factor sensitivities ∆a affects ML by
∆aTω∗ = −√cα

∆aT Σa√
aT Σa

.

In Section 3.3 it was shown that for linear portfolios the relation VaR(α) =
zα√
cα

ML(α) holds. Hence, the new trade changes Value–at–Risk by

∆VaR(α) = −zα
∆aTΣa√
aTΣa

,

which coincides with the first order approximation of

−zα[
√

(a + ∆a)TΣ(a + ∆a)−
√
aTΣa],

which is the difference of the analytic Delta–Normal VaRs of Theorem 1.16.6

3.5 Correlation Risk

What is the effect on Maximum Loss if there is a complete breakdown in the
correlation structure? The following analysis can be understood as a ‘correlation

6This result, although obtained from a sensitivity analysis of Maximum Loss, coincides
exactly with the VaR-Delta formula of Garman (1997).
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stress test’. In Section 3.2.1 it has been shown that the covariance matrix Σ can
be decomposed into Σ = V RV , where V is the diagonal matrix of the standard
deviations and R is the correlation matrix. The set of all correlations matrices
R ∈ IRM×M is denoted by C.

Theorem 3.31 Let ω ∼ N (0,Σ) and V the matrix of standard deviations of
Definition 3.8. Then the sets U1 = {ω ∈ IRM | ∃R ∈ C : ωTV −1R−1V −1ω ≤ cα}
and U2 = {ω ∈ IRM | −√cα(V )i,i ≤ ωi ≤

√
cα(V )i,i, i = 1, . . . ,M} are identical.

Proof: First, for every fixed correlation matrix R the resulting ellipsoid

TR = {ω ∈ IRM | ωTV −1R−1V −1ω ≤ cα}
is contained in the box U2: according to Theorem 3.15, the solution of the op-
timization problem minωTV −1R−1V −1ω≤cα

ωi is ω∗
i = −√cα

√
(Σ)i,i, i = 1, . . . ,M .

Hence, the interval [−√cα(V )i,i,
√
cα(V )i,i] is the range in which risk factor ωi

takes its feasible values and consequently TR ⊆ U2.
On the other hand, let ω be an arbitrary scenario of U2. Then, there exists a
correlation matrix R ∈ C for which ω ∈ TR: denote by ω̃ the intersection of the
vector ω with the box U2, i.e. ω̃ = λ̃ω, where λ̃ = max{λ ≥ 1 | λω ∈ U2}. Let i
be an active box constraint (i.e. ω̃i = ±√cα(V )i,i). Take any correlation matrix

R whose ith row/column is equal to (R)i = −V −1ω̃√
cα

. This is a valid row of a

correlation matrix and it is easy to verify that ω̃ is a solution to the problem
minωTV −1R−1V −1ω≤cα

ωi. Hence, ω̃ ∈ U1 and therefore ω ∈ U1.

Ergo, the size of the box which contains all feasible scenarios depends only on
the standard deviations of the risk factors and not on their correlations. Thus, if
the correlations are allowed to vary freely, Maximum Loss is

ML(α) = min v(ω)

s.t. −√cα(V )i,i ≤ ωi ≤
√
cα(V )i,i, i = 1, . . . ,M. (3.10)

It will be shown in Section 3.7 that, contrarily to the ellipsoidal ML problem
minωT Σ−1ω≤cα

vq(ω), this box constrained quadratic programming problem is ex-
tremely difficult to solve.

3.6 Foreign Exchange: Consistency Restric-

tions

In Section 2.2 it has been shown that in order to model currency risk consistently,
only risk factors related to foreign exchange rates and their volatilities have to
be used. More precisely, Lemma 2.3 and Corollary 2.5 indicate how to derive the
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value of the cross rate ψA
B

and its volatility ψσ,A
B

from the foreign exchange rates

ψH
A
, ψH

B
and their volatilities ψσ,H

A
, ψσ,H

B
.

Theorem 2.4 shows that if the relative returns of the foreign exchange rates
dX

H
A

t

X
H
A

t

and
dX

H
B

t

X
H
B

t

are normally distributed, then also
dX

A
B
t

X
A
B
t

∼ N (µA
B
dt, σ2

A
B

dt), where σ2
A
B

can be calculated from the variances and the correlation of the foreign exchange
rates. If we consider a holding period of length T we get

Var

(
ψA

B
− ψ0

A
B

ψ0
A
B

)
= σ2

A
B
T,

where ψ0
A
B

is the value of the cross rate at the beginning of the period and ψA
B

the value at the end of the period. Since ψ0
A
B

is a constant, it follows that

Var(ψA
B
) = (ψ0

A
B
σA

B
)2T.

In the model developed in Section 3.2, the trust region T is an ellipsoid which
restricts the moves of the risk factors ωH

A
, ωH

B
, ωσ,H

A
and ωσ,H

B
. If we use the no–

arbitrage relation ψ̄A
B

=
ψ̄H

B

ψ̄H
A

, we can limit the moves in the cross rate ψA
B

by

additional confidence bounds:

Theorem 3.32 If, at the end of the holding period, the value of the cross rate is

ψA
B
∼ N (ψ̄A

B
, σ̂2

A
B

) with ψ̄A
B

=
ψ̄H

B

ψ̄H
A

, then the linear restrictions

(
−

ψ̄H
B

ψ̄H
A

− z 1+α
2

σ̂A
B

)
ωH

A
+ ωH

B
≤ ψ̄H

A
z 1+α

2
σ̂A

B(
ψ̄H

B

ψ̄H
A

− z 1+α
2

σ̂A
B

)
ωH

A
− ωH

B
≤ ψ̄H

A
z 1+α

2
σ̂A

B
,

define a confidence region of level α for the cross rate A
B
. z 1+α

2
is the (1+α

2
)–

quantile of the standard normal distribution.

Proof: The deviation of the cross rate from its expected value is

ψA
B
− ψ̄A

B
=

ωH
B

+ ψ̄H
B

ωH
A

+ ψ̄H
A

−
ψ̄H

B

ψ̄H
A

,

simply because ψi = ωi + ψ̄i by Definition 1.1. Since the quantity (ψA
B
− ψ̄A

B
) is

normally distributed with mean 0 and variance σ̂2
A
B

, it follows that

52



∣∣∣∣∣
ωH

B
+ ψ̄H

B

ωH
A

+ ψ̄H
A

−
ψ̄H

B

ψ̄H
A

∣∣∣∣∣ ≤ z 1+α
2

σ̂A
B

is a confidence region of level α for (ψA
B
− ψ̄A

B
). The two linear restrictions are

obtained by considering positive and the negative values separately.

This way, every combination of two foreign exchange rates gives rise to two ad-
ditional linear consistency restrictions (cf. Figure 3.3).

H/A

H/B

Figure 3.3: Effect of additional FX–restrictions

Consequently, if there are N foreign exchange rates in the model, N(N−1) linear
consistency restrictions can be added. Assuming a quadratic P&L function vq(ω),
the resulting ML problem has the following form:

ML(α) = min vq(ω)

s.t. ωTΣ−1ω ≤ cα

Aω ≤ b,

where Aω ≤ b stands for the additional consistency restrictions. If we replace
the ellipsoidal trust region restriction ωTΣ−1ω ≤ cα by lower and upper bounds7

−√cα(V )i,i ≤ ωi ≤
√
cα(V )i,i, we get a polytope constrained quadratic program-

ming problem, for which even the calculation of an approximate solution is a
difficult task, as will be shown in Section 3.7.

Hence, the introduction of additional consistency restrictions leads to less conser-
vative and more realistic ML figures; however, the computational effort for their
calculation increases considerably.

7See Section 3.5.
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3.7 Complexity Issues

Vavasis (1991) proves that it is possible to calculate in polynomial time an ε–
approximation to the ball constrained quadratic problem minωTω≤1

1
2
ωTGω +

gTω,8 which is the core problem of the Maximum Loss computations. In this
section, we will show that this result is exceptional in the sense that quadratic
problems with linearly restricted feasible domains are hard to solve. Linear con-
straints occur when introducing additional FX consistency–restrictions (cf. Sec-
tion 3.6) or when determining an upper bound for the correlation risk by solving
box constrained quadratic programming problems (cf. Section 3.5).

Definition 3.33 Let vq(ω) = 1
2
ωTGω + gTω be a quadratic P&L function. For

l1 ≤ l2 ∈ IRM , problems of the type

(BQP) : min vq(ω)

s.t. l1 ≤ ω ≤ l2

are called box constrained quadratic programming problems (BQP).

The box constrained problems (BQP) are a subset of the general quadratic pro-
gramming problems:

Definition 3.34 Let vq(ω) be a quadratic P&L function, A ∈ IRN×M and b ∈
IRN . The general quadratic programming problem (QP) is

(QP) : min vq(ω)

s.t. Aω ≤ b.

Both problems (QP) and (BQP) are known to be difficult to solve. However,
before complexity issues can be properly addressed, it must be ensured that the
problems have a finite encoding.

Assumption 3.35 In the remaining part of Section 3.7, we assume that all data
which specify a particular instance of a problem are rational numbers.9

First of all, we will investigate the complexity of decision problems: ‘Given a
rational number ζ, does there exist ω ∈ IRM satisfying vq(ω) ≤ ζ, Aω ≤ b?’
The complexity class NP consists of the decision problems whose solutions can
be verified efficiently. More precisely, a problem belongs to NP if for each of its

8See also Theorem 3.21.
9The quadratic programming problems are described by G ∈ QM×M and g ∈ QM , which

define the objective function vq(ω) = 1
2ω

TGω + gTω, and A ∈ QN×M , b ∈ QN for (QP),
respectively l1, l2 ∈ QM for (BQP), which specify the feasible regions.
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yes–instances there exists a certificate which can be verified in polynomial time
(i.e. ∃ω∗ of polynomial length which satisfies vq(ω

∗) ≤ ζ and Aω∗ ≤ b).
On the positive side, the decision problems (QP) and (BQP) do not lie in a more
difficult complexity class than any other problem in NP:

Theorem 3.36 The decision version of the quadratic programming problem
(QP) is NP–complete.

Proof: The proof that (QP) belongs to the class NP is given in Vavasis (1991),
pp. 76. To show that each problem of NP can be polynomially transformed
into an instance of (QP), we transform the satisfiability problem SAT10, which is
known to be NP–complete, into (QP): each boolean variable xi is replaced by a
variable ωi and its negation by (1 − ωi), the natural bounds being 0 ≤ ωi ≤ 1.
Then, each clause is transformed into a linear constraint, e.g. (x1 ∨ x2 ∨ ¬x3)
becomes ω1 + ω2 + (1− ω3) ≥ 1. Finally, the objective function is constructed in
such a way that each ωi is forced to become either 0 or 1:

vq(ω) =
M∑
i=1

ωi(1− ωi).

The result follows by observing that a yes–instance of SAT corresponds to an
instance of (QP) with global minimum 0.

Corollary 3.37 The decision version of the box constrained quadratic program-
ming problem (BQP) is NP–complete.

Proof: This proof is based on the proof of Theorem 3.36 in the sense that an
instance of (QP) is reduced to one of (BQP): each individual constraint aTj ω ≥ bj
of (QP) is written as aTj ω = bj +yj, where yi is a new decision variable, for which
lower and upper bounds can be specified. Then, each condition aTj ω = bj + yj is
replaced by an additional term (aTj ω − bj − yj)

2 in the objective function, which
is nonnegative on the feasible region. It is easy to see that an objective value of
0 corresponds to a yes–instance of SAT and vice versa.

Let us turn away from decision problems and look at the proper optimization
problems (QP) and (BQP). A problem H is said to be NP–hard if any NP–
complete problem C can be solved in polynomial time, provided that it can use
an oracle which computes the solution of H in polynomial time. If a polynomial
time algorithm for H were available, this would imply that P=NP. Obviously,
both problems (QP) and (BQP) are NP–hard:

10A satisfiability problem consists of a set of boolean variables {x1, . . . , xn} and a set of
clauses S1, . . . , Sm. A clause is an OR composition of variables and their negations, e.g. S1 =
(x1 ∨ ¬x3). An assignment (x∗1, . . . , x

∗
n) is feasible, if all clauses are satisfied simultaneously.
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Theorem 3.38 The general quadratic programming problem (QP) is NP–hard.

Proof: Take an instance of SAT and apply the transformation used in the proof
of Theorem 3.36.

Corollary 3.39 The box constrained quadratic Programming problem (BQP) is
NP–hard.

Proof: See the proof of Corollary 3.37.

In fact, it is even impossible to compute efficiently an approximate solution as
will be shown in Theorem 3.41. To understand the difficulties that can arise when
solving the problems (QP) and (BQP), we will assume that the feasible region is
bounded:

Definition 3.40 Let ω ∈ IRM and vq(ω) be a quadratic P&L function and let
D = {ω ∈ IRM | Aω ≤ b} be a polytope, where A ∈ IRN×M and b ∈ IRN . The
polytope constrained quadratic programming problem (PQP) is defined as

(PQP) : min vq(ω)

s.t. ω ∈ D.

When a polytope constrained quadratic programming problem minω∈D
1
2
ωTGω+

gTω is solved, one of three cases can arise:

• if G is positive semidefinite, the optimum ω∗ may lie in the interior of the
feasible region

• if G is negative definite, the optimum ω∗ is attained at a vertex

• if G is indefinite, the optimum ω∗ lies at the boundary of the polytope.

Horst et al. (1995) propose an active set method for solving the problem (PQP).
In this method, each of the 2N possibly active sets11 are examined, where N is
the number of the linear constraints. Therefore, this exact algorithm has a rather
poor performance.
Most discouraging is the fact that even the calculation of an ε–approximation of
(PQP) is an intractable problem:

Theorem 3.41 There exists a constant ε ∈ (0, 1) such that finding an ε–approxi-
mation to the polytope constrained quadratic programming problem (PQP) is NP–
hard.

11An active set is a subset of inequalities which are simultaneously satisfied as equalities,
while the remaining constraints are disregarded.
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Proof: A proof is presented in Bellare and Rogaway (1995).12

Hence, we can neither expect to find a ‘good’ algorithm to execute the correlation
stress test of Section 3.5, nor an efficient method which would allow to consider
the linear constraints induced by the additional FX restrictions of Section 3.6.

12Bellare and Rogaway (1995) show that the polytope constrained quadratic programming
problem (PQP) is NP–hard as soon as ε ≤ 1

3 . Indeed, the best known polynomial time algorithm
for the box constrained quadratic programming problem (BQP) calculates 4

7 approximate solu-
tions (cf. Ye (1997)).
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Chapter 4

Advanced Applications

4.1 Portfolio Characterization

4.1.1 Maximum Loss Path

Repetitive calculations of Maximum Loss give insights which go far beyond a
simple worst case identification. The Levenberg–Marquardt algorithm, which
has been presented in Section 3.4.1, allows to determine the value of the maximal
loss as well as to identify the worst case scenario for some given confidence level
α. If this calculation is repeated for a sequence of increasing confidence levels α,
a list of MLs and scenarios is obtained.

Example 4.1 Table 4.1 shows the results of such a repetitive calculation for the
test portfolio of Example 1.17.

α ML Risk Factor 1 Risk Factor 2 . . . Risk Factor 7
...

...
...

... . . .
...

88 % -2688.49 -2.727 -1.671 . . . -0.825
89 % -2735.55 -2.761 -1.690 . . . -0.834
90 % -2786.36 -2.796 -1.711 . . . -0.844
91 % -2841.72 -2.834 -1.733 . . . -0.855

...
...

...
... . . .

...

Table 4.1: Repetitive calculation of ML for test portfolio

The geometric interpretation of this procedure is the following: increasing α from
0 to some upper limit means expanding the trust region T from a single point,
which represents the expected state ψ̄ of the world at the end of the holding
period, to the final ellipsoid. The sequence of the resulting ML scenarios defines
a path which starts at the origin (i.e. ω = 0) and follows the worst possible route.
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By Remark 3.25, the worst case scenario ω∗ depends continuously on the size cα
of the trust region. To obtain path which is smooth, the minimization problem
has to be solved for many levels of α. However, the number of minimizations can
be reduced by using the sensitivity analysis presented in Corollary 3.27 together
with some interpolation scheme.

Remark 4.2 The techniques which have been discussed in Chapter 3 can, of
course, also be applied to the profit side of the portfolio. Indeed, the Maximum
Profit (MP) problem maxω∈T v(ω) can be solved by inverting the sign of the ob-
jective function and calculating −minω∈T −v(ω).

Example 4.3 Figure 4.1 shows the ML and MP paths for the test portfolio of
Example 1.17.
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Figure 4.1: ML and MP paths of test portfolio

If the matrix G of the quadratic ML problem minωT Σ−1ω≤cα

1
2
ωTGω+gTω is posit-

ive definite (i.e. all curvatures are positive), then the unconstrained optimization
problem min vq(ω) has a strict global minimum ω∗. Consequently, the ML path
will stop at ω∗ as soon as this point lies in the interior of the trust region T . It
might be interesting, however, to see how the path would evolve if we restricted
the solution to lie on the surface of the expanding trust region. This is equivalent
to solve the problem

ML(α) = min
1

2
ωTGω + gTω

s.t. ωTΣ−1ω = cα,

where the inequality sign has been replaced by an equality sign. Before we can
solve this problem, the ellipsoid has first to be transformed into a sphere. This
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can be achieved by the linear transformation of Definition 3.16. The resulting
problem is

ML(α) = min
1

2
ω̂T Ĝω̂ + ĝT ω̂

s.t. ω̂T ω̂ = cα. (4.1)

The following theorem gives a hint about how to solve problem (4.1) with the
already known Levenberg–Marquardt algorithm:

Theorem 4.4 Let κ > max(λ1, 0), where λ1 is the lowest eigenvalue of Ĝ. The
scenario ω̂∗ is a solution to

min
1

2
ω̂T (Ĝ− κI)ω̂ + ĝT ω̂

s.t. ω̂T ω̂ = cα

if and only if ω̂∗ is a solution to

min
1

2
ω̂T (Ĝ− κI)ω̂ + ĝT ω̂

s.t. ω̂T ω̂ ≤ cα. (4.2)

Proof: The matrix (Ĝ− κI) is not positive semidefinite. Theorem 3.20 charac-
terizes solutions to the problem (4.2): condition (3.3) requires that (Ĝ−κI+ν∗I)
has to be positive semidefinite, hence ν∗ ≥ κ > 0 must hold. Consequently,
we need that ‖ω̂∗‖2 = cα in order to fulfil condition (3.5), which says that
ν[cα − (ω̂∗)T ω̂∗] = 0 has to be satisfied. Since ν∗ is unique by Theorem 3.20, it
follows that ω̂∗ is a solution to both problems.

Corollary 4.5 Let κ > max(λ1, 0), where λ1 is the lowest eigenvalue of Ĝ. If ω̂∗

is solution to the problem minω̂T ω̂≤cα

1
2
ω̂T (Ĝ−κI)ω̂+ ĝT ω̂, then it is also solution

to minω̂T ω̂=cα

1
2
ω̂T Ĝω̂ + ĝT ω̂.

Proof: In the proof of the last theorem we have shown that ‖ω̂∗‖2 = cα. Hence,

1

2
(ω̂∗)T (Ĝ− κI)ω̂∗ + ĝT ω̂∗ =

1

2
(ω̂∗)T Ĝω̂∗ + ĝT ω̂∗ − 1

2
κcα,

which shows that the objective function of the two problems differ only by the
constant 1

2
κcα.
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Therefore, the worst case scenario ω∗ of the original problem (4.1) is identical
to the solution of problem (4.2). However, before problem (4.2) can be solved
with the Levenberg–Marquardt algorithm, a feasible value for κ is needed. Such
a value can be gained by estimating a lower bound of λ1, for example, using
Gerschgorin circles1.

4.1.2 Expected Profit and Loss

The knowledge of only Maximum Loss and Maximum Profit is not sufficient to
judge about the quality of a portfolio, as the following example shows:

Example 4.6 Suppose that we have a portfolio which depends on the risk factor
ω = (ω1, . . . , ω10) with ω ∼ N (0, I). If the P&L function is v(ω) =

∑9
i=1 ω

2
i −

2ω2
10, then we have MP(α) = cα and ML(α) = −2cα. The analysis of the extrema

gives the impression that the portfolio is very risky, although the chances to make
a profit are much higher than the chance to be hit by a loss.

What is missing, is some information about the average P&L. Therefore, we will
calculate the conditional expected value (EV) of the portfolio, given that we are
on the surface of the trust region.

Theorem 4.7 Let ω̂ ∼ N (0, I) and v̂q(ω̂) = 1
2
ω̂T Ĝω̂ + ĝT ω̂. Then E(v̂q(ω̂) |

ω̂T ω̂ = cα) = cα

2
Tr(Ĝ)
M

, where Tr(Ĝ) denotes the trace of matrix Ĝ.

Proof: By abuse of notation, the density of risk factor ω̂ is

f(ω̂) = (2π)−M/2 exp(−1

2

M∑
i=1

ω̂2
i ).

Consequently, the conditional density f(ω̂ | ω̂T ω̂ = cα) is constant. The quadratic
function v̂q(ω̂) is made up of three different kinds of terms:

• linear terms: for each component ω̂i we have

E(ω̂i | ω̂T ω̂ = cα) =
1

2
E(ω̂i | ω̂T ω̂ = cα, ω̂i ≥ 0)

+
1

2
E(ω̂i | ω̂T ω̂ = cα, ω̂i < 0)

=
1

2
E(ω̂i | ω̂T ω̂ = cα, ω̂i ≥ 0)

+
1

2
E(−ω̂i | ω̂T ω̂ = cα, ω̂i > 0)

= 0. (4.3)

1See Noble and Daniel (1988), pp. 317.
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• mixed terms: by the same reasoning as before we get for the expectation
of the product ω̂iω̂j for i �= j:

E(ω̂iω̂j | ω̂T ω̂ = cα) = 0. (4.4)

• quadratic terms: since
∑M

j=1 ω̂
2
j = cα, it follows

E(ω̂2
i | ω̂T ω̂ = cα) = E(cα −

∑
j �=i

ω̂2
j | ω̂T ω̂ = cα)

= E(cα | ω̂T ω̂ = cα)−
∑
j �=i

E(ω̂2
j | ω̂T ω̂ = cα)

= cα − (M − 1)E(ω̂2
i | ω̂T ω̂ = cα),

which implies that

E(ω̂2
i | ω̂T ω̂ = cα) =

cα
M

. (4.5)

Putting the results of (4.3), (4.4) and (4.5) together, the conditional expectation
becomes

E(v̂q(ω̂) | ω̂T ω̂ = cα) = E(
1

2

M∑
i,j=1

(Ĝ)i,jω̂iω̂j +
M∑
i=1

ĝiω̂i | ω̂T ω̂ = cα)

= E(
1

2

M∑
i=1

(Ĝ)i,iω̂
2
i | ω̂T ω̂ = cα)

=
1

2

M∑
i=1

(Ĝ)i,i
cα
M

=
cα
2

Tr(Ĝ)

M
. (4.6)

Hence, the expected P&L on a sphere depends only on the trace of Ĝ, the radius√
cα of the sphere and the dimension M of the problem. Since Tr(Ĝ) is identical

to the sum of all eigenvalues of Ĝ, we get that the expectation of the P&L on a
sphere with radius

√
cα is cα

2
times the mean curvature of the quadratic function

v̂q(ω̂) = 1
2
ω̂T Ĝω̂ + ĝT ω̂.
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Example 4.8 The analysis for the test portfolio of Example 1.17 is displayed
in Figure 4.2, which shows the P&L along the ML and MP paths as well as the
values of EV on the surface of the growing trust region. Since the absolute value
of ML highly exceeds MP for every α and EV is negative and decreasing, it may
be concluded that changes in the market rates affect the portfolio value negatively
most of the time.
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Figure 4.2: ML, MP and EV paths of test portfolio

Once an analytic expression for E(v̂q(ω̂) | ω̂T ω̂ = cα) is known, it is possible to
calculate the expected value of the P&L in the interior of the trust region:

Corollary 4.9 Let ω̂ ∼ N (0, I) and v̂q(ω̂) = 1
2
ω̂T Ĝω̂ + ĝT ω̂. Then

E(v̂q(ω̂) | ω̂T ω̂ ≤ cα) =
Tr(Ĝ)

αM

Γ cα
2

(M
2

+ 1)

Γ(M
2

)
,

where Γc(y) =
∫ c

0
yy−1 exp(−y)dy denotes the incomplete gamma function.

Proof: From Theorem 4.7 we know that E(v̂q(ω̂) | ω̂T ω̂ = cα) = cα

2
Tr(Ĝ)
M

.
Since cα is the α–quantile of a χ2 distribution with M degrees of freedom,
the squared radius y = ω̂T ω̂ can be seen as a random variable with density

f(y) = y
M
2 −1

Γ(M
2

)2
M
2

exp(−y
2
). Integrating y from 0 to cα leads to
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E(v̂q(ω̂) | ω̂T ω̂ ≤ cα) =

∫ cα

0

y

2

Tr(Ĝ)

M

1

α

y
M
2
−1

Γ(M
2

)2
M
2

exp(−y

2
)dy

=
Tr(Ĝ)

2αM

1

Γ(M
2

)

∫ cα

0

y
M
2

2
M
2

exp(−y

2
)dy

=
Tr(Ĝ)

αM

1

Γ(M
2

)

∫ cα
2

0

z
M
2 exp(−z)dz

=
Tr(Ĝ)

αM

Γ cα
2

(M
2

+ 1)

Γ(M
2

)
,

where y
2

has been substituted by z.

4.2 Coping with Nonlinearity

4.2.1 Quadratic Approximations

So far, we have mainly worked with quadratic P&L functions. As already men-
tioned, such functions can, for example, be obtained from local δ–Γ approxima-
tions vq(ω) = δTω + 1

2
ωTΓω + o(‖ω‖2).2 However, such local approximations are

only valid for small changes of ω — in our model for short holding periods T and
small confidence levels α. For large moves of the risk factors, local approxima-
tions can lead to tremendous errors. In practice, so–called risk profiles as those
shown in Figure 1.2 are used to analyse the structure of the P&L functions:

Definition 4.10 The set of scenarios S = {ω(1), . . . , ω(n)} holds n different M-
dimensional scenarios. The profits and losses ξ(i) = v(ω(i)) of the individual
scenarios define the set P = {ξ(1), . . . , ξ(n)}.
From the sets P and S, a quadratic approximation v(ω) = 1

2
ωTGω + gTω + c can

be constructed by minimizing the sum of the squared errors, i.e. by the method
of least squares:

min
n∑

i=1

(
1

2
ω(i)TGω(i) + gTω(i) + c− ξ(i)

)2

s.t. G ∈ IRM×M , symmetric

g ∈ IRM

c ∈ IR. (4.7)

2See Definition 1.8.
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In this problem, the values ω(i) and ξ(i) for i = 1, . . . , n are given and the matrix
G, the vector g and the scalar c are the unknowns.

Definition 4.11 The scenario matrix S is defined by the set of scenarios S =
{ω(1), . . . , ω(n)} in the following way:

S =




1
2
ω2

1 ω1ω2 . . . ω1ωM
1
2
ω2

2 ω2ω3 . . . ω1 . . . ωM 1

ω(1) . . . . . . 1
ω(2) . . . . . . 1
...

...
. . .

...
ω(n) . . . . . . 1


.

This means that S is an n × (M(M+3)
2

+ 1) matrix whose ith row contains, for
scenario ω(i), the various products indicated in the line above the matrix. The
P&L vector ξ ∈ IRn holds the P&Ls of each scenario

ξ =
(
ξ(1), . . . , ξ(n)

)
.

The vector of the unknowns x has an entry for each unknown of problem (4.7):

x = (G1,1, G1,2, . . . , G1,M , G2,2, G2,3, . . . , GM,M , g1, . . . , gM , c) ,

in total (M(M+3)
2

+ 1) elements.

With these new notations, problem (4.7) can be restated as

min ‖Sx− ξ‖2.

The solution of this unconstrained minimization problem can be determined by
solving a linear system:

Theorem 4.12 x∗ is solution to the minimization problem min ‖Sx− ξ‖2 if and
only if it is solution to the normal equation STSx = ST ξ.

Proof: Since STS is positive semidefinite, the function f(x) = (Sx−ξ)T (Sx−ξ)
is convex and its gradient is ∇f(x) = 2STSx − 2ST ξ. Thus, x∗ is solution to
∇f(x∗) = 0 if and only if STSx∗ = ST ξ.

The quadratic approximation vq(ω) is well defined if the scenario matrix S is
chosen appropriately:

Lemma 4.13 Let S ∈ IRn×m with n ≥ m. Then, the normal equation STSx = y
has a unique solution if S is of full rank.
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Proof: If we premultiply the equation STSx = 0 by xT , we get
xTSTSx = ‖Sx‖2 = 0, which implies that x = 0.

Assumption 4.14 We will assume in the remainder of this chapter that the
set S of scenarios has been chosen such that the scenario matrix S is of rank
M(M+3)

2
+ 1.3

Note that the newly introduced scalar c can simply be added as a constant to all
the previously discussed quantities ML, MP and EV.

4.2.2 Dynamic Weighting

The least squares method of Section 4.2.1 leads to quadratic approximations
vq(ω) with best fit with respect to the entire set S of scenarios. However, if the
Maximum Loss is calculated on the surface of an ellipsoid,4 we can get better
quadratic approximations by weighting the scenarios adequately.

Definition 4.15 Let S = {ω(1), . . . , ω(n)} be the set of scenarios. A weighting
matrix for S is a diagonal matrix W ∈ IRn×n with (W )i,i > 0, i = 1, . . . , n.

The basic idea of the dynamic weighting procedure is to give a higher weight to
those scenarios ω(i), which lie close to the the surface of the ellipsoid, i.e. for
which ω(i)TΣ−1ω(i) ≈ cα. In this case, problem (4.7) becomes

min ‖W 1
2 (Sx− ξ)‖2.

Theorem 4.16 x∗ is solution to the minimization problem min ‖W 1
2 (Sx− ξ)‖2

if and only if x∗ is solution to STWSx = STWξ.

Proof: Since STWS is positive semidefinite, it follows that the function

f(x) = [W
1
2 (Sx− ξ)]TW

1
2 (Sx− ξ)

is convex and its gradient is ∇f(x) = 2STWSx − 2STWξ. Therefore, x∗ is
solution to ∇f(x∗) = 0 if and only if STWSx∗ = STWξ.

In practice, good results have been obtained by using weights of the form

(W )i,i(α) =
1

1 + β | ω(i)TΣ−1
t ω(i) − cα |γ

, (4.8)

3In Section 4.2.3 it will be explained how to choose a meaningful set of scenarios S, which
guarantees that the quadratic approximation vq(ω) is well defined.

4See Section 4.1.1.
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where β, γ > 0 are parameters which control the smoothness of the weighting
function W (α) with respect to α. This notation stresses the fact that the weight-
ing matrix W depends on the size of the ellipsoid, i.e. on the confidence level α.
Hence, the unknown x of the normal equation depends also on α:

STW (α)Sx(α) = STW (α)ξ,

and the elements of x(α) define the matrix G(α), the vector g(α) and the scalar
c(α) of the best fitting quadratic P&L function for confidence level α:

vq(ω, α) =
1

2
ωTG(α)ω + g(α)Tω + c(α).

For fixed α, the paths of ML, MP and EV can be calculated applying the meth-
ods described in Section 4.1. This enables to analyze portfolios, which are not
necessarily quadratic, by working with a sequence of quadratic approximations.

Example 4.17 Figure 4.3 shows a two–dimensional, highly nonlinear P&L func-
tion. The bold lines represent the paths of the Maximum Loss scenarios and the
Maximum Profit scenarios, which have been determined using a weighting func-
tion of type (4.8).

ML

MP P&L

1.5

-3

0

-1.5

ω1 ω2

Figure 4.3: Nonquadratic portfolio with ML and MP paths

Figure 4.4 displays the P&Ls along these paths, together with the Expected Value
EV on the surface of the ellipsoid.

Remark 4.18 For quadratic portfolios, the technique of dynamic approximations
produces exact results as there exists an x∗ such that Sx∗ − ξ = 0. Hence,
‖W 1

2 (Sx∗ − ξ)‖2 = 0, independently of the positive definite weighting matrix W .
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Figure 4.4: Characteristics of nonquadratic portfolio

4.2.3 Implementation

To implement the dynamic approximation technique, the following steps need to
be executed:5

1. Given are a set of scenarios S = {ω(1), . . . , ω(n)} with corresponding P&Ls
P = {ξ(1), . . . , ξ(n)}, as well as the risk factor covariance matrix Σ for a
holding period of T days.

2. Calculate the Cholesky decomposition Σ = UTU .

3. Calculate the scenario matrix S and the P&L vector ξ according to Defin-
ition 4.11.

4. For α = 0%, . . . , 99% do

(a) Calculate the weight (W )i,i(α) > 0 of each scenario ω(i), for example,
using formula (4.8):

(W )i,i(α) =
1

1 + β | ω(i)TΣ−1
t ω(i) − cα |γ

,

where β, γ > 0 are parameters which control the smoothness. All
off–diagonal elements of W (α) ∈ IRn×n are set to 0.

5This is just an outline of the general structure of the algorithm. Practical implementa-
tions should take into account the various possibilities to reduce the computational costs. For
example, it is advisable to use sparse matrix structures for the scenario matrix S and the
weighting matrix W (α). Moreover, the quantity ω(i)T Σ−1ω(i) needs only to be evaluated in
the first iteration of step 4(a).
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(b) Solve the normal equation STW (α)Sx(α) = STW (α)ξ for x(α).

(c) In accordance to Definition 4.11, the vector x(α) holds the elements of
the symmetric matrix G(α) ∈ IRM×M , the vector g(α) ∈ IRM , as well
as the scalar c(α), which define the quadratic function

vq(ω, α) =
1

2
ωTG(α)ω + g(α)Tω + c(α).

(d) Use the Cholesky decomposition of the covariance matrix to trans-
form the ellipsoidal problem minωT Σ−1ω≤cα

vq(ω, α) to a spherical one:

minω̂T ω̂≤cα

1
2
ω̂T Ĝω̂+ ĝT ω̂+c(α), where ĝ = Ug(α) and Ĝ = UG(α)UT .

(e) Determine the Maximum Loss

ML(α) = min
1

2
ω̂T Ĝω̂ + ĝT ω̂ + c(α)

s.t. ω̂T ω̂ = cα

with the Levenberg–Marquardt algorithm of Section 3.4.1 (cα is the
α–quantile of a χ2 distribution with M degrees of freedom, where M
is the number of risk factors).

(f) Transform the result ω̂∗ back into the original coordinate system: ω∗ =
UT ω̂∗.

(g) Compute MP(α) and the corresponding scenario by inverting the sign
of the objective function6 and applying steps (e) and (f).

(h) Calculate the expected value EV as shown in Section 4.1.2:

EV(α) =
cα
2

Tr(Ĝ)

M
.

Choice of the scenario set S
It remains to specify what scenarios ω(1), . . . , ω(n) the set S should contain. A
straightforward approach would be to cover the scenario space with a regular
grid of points. However, if k points were chosen on each of the M axes, kM

scenarios would have to be evaluated in order to determine the set P of P&Ls.
For portfolios with a large number M of risk factors (as observed in practice), this
leads to a tremendous computational effort. Since the set S is used to construct
the M–dimensional quadratic function

v(ω, α) =
1

2
ωTG(α)ω + g(α)Tω + c(α),

6See Remark 4.2.
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with the unknowns being the elements of the (M ×M) symmetric matrix G(α),
the M–dimensional vector g(α) as well as the scalar c(α), the set S needs at least

(M(M+3)
2

+ 1) scenarios to determine a unique solution.7

In order to approximate the mixed term coefficients Gi,j, i �= j, the set S must
include scenarios whose components ωi and ωj are not simultaneously 0. If we
restrict the values of each risk factor ωi to an interval [−li, li],

8 then the product
ωiωj reaches its extremes at the corner points with coordinates (±li,±lj). There-
fore, it seems reasonable to choose scenarios which lie on the diagonals in order
to estimate the effect of the mixed terms (cf. Figure 4.5).
Choosing scenarios with at most two nonzero components ωi, ωj �= 0 bears the
advantage that one and the same set S can be used for analysing the effects
of various subsets of risk factors and at different organizational levels, without
having to reprice the instruments.

ω j

ω i

Figure 4.5: Choice of scenarios

Since the elements of the diagonal weighting matrix W are all positive, we con-
clude from Lemma 4.13 that the normal equation STWSx = STWξ of Theorem
4.16 has a unique solution if the scenario matrix S is of rank (M(M+3)

2
+ 1).

Theorem 4.19 Let the number of risk factors M ≥ 3. If the set of scenarios S
contains for each two by two combination of risk factors at least k ≥ 2 symmetrical
scenarios per diagonal, then the scenario matrix S is of rank (M(M+3)

2
+ 1).

Proof: If we include the scenario ω = 0 into S, this construction leads to a total
number of n = 2k

(
M
2

)
+ 1 = kM(M − 1) + 1 scenarios. Since kM(M − 1) + 1 ≥

M(M+3)
2

+ 1 for k ≥ 2 and M ≥ 3, the matrix S has more rows than columns and

7See Lemma 4.13.
8Theorem 3.31 has shown that if ω ∼ N (0,Σ), then all feasible values of risk factor ωi with

respect to the trust region ωT Σ−1ω ≤ cα belong to the interval [−√cα
√

(Σ)i,i,
√
cα

√
(Σ)i,i].
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it remains to proof that the (M(M+3)
2

+ 1) columns of S are linearly independent.
We will proceed by induction:

For M = 3 risk factors, it can easily be verified that the 13 × 10 matrix S3 of
Definition 4.11 is of rank 10.

Assume that the columns of the scenario matrix SM are linearly independent. If
we add the (M + 1)th risk factor, the new scenario matrix SM+1 can be written
as

SM+1 =

(
SM 0

Q S̃

)
,

where S̃ has the structure

S̃ =




1
2
ω2
M+1 ω1ωM+1 ω2ωM+1 ω3ωM+1 . . . ωMωM+1 ωM+1

ω(n+1) 1 1 0 0 . . . 0 1
ω(n+2) 1 −1 0 0 . . . 0 1
ω(n+3) 1 1 0 0 . . . 0 −1
ω(n+4) 1 −1 0 0 . . . 0 −1
ω(n+5) 1 0 1 0 . . . 0 1
ω(n+6) 1 0 −1 0 . . . 0 1
ω(n+7) 1 0 1 0 . . . 0 −1
ω(n+8) 1 0 −1 0 . . . 0 −1
...

...
...

ω(n+4M) 1 0 . . . 0 0 −1 −1




.

Of course, the number of rows of S̃ exceeds the number of columns and all its
columns are linearly independent. Thus, the columns of SM+1 itself are linearly
independent.

In practice, the number n of scenarios might be reduced if it is known in advance
that there are pairs of risk factors ωi and ωj without cross effects. In this case,
the corresponding element Gi,j can be set to 0 a priori. However, it may become
necessary to choose scenarios which lie directly on the axis ωi (and/or ωj) in

order to ensure that the scenario matrix S remains of rank (M(M+3)
2

+ 1).9

9It should be noticed that the parameters β and γ of the weighting function (4.8)

(W )i,i(α) =
1

1 + β | ω(i)T Σ−1ω(i) − cα |γ

need to be adjusted to the number k of scenarios per diagonal to assure that the P&L
functions vq(ω, α) are reasonably smooth with respect to α. For example, β = 100 and γ = 2
turned out to be good choices for k = 6.
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4.3 Factors–at–Risk

4.3.1 Importance of Risk Factors

In Section 3.1 it has been shown that the risk of a portfolio can be reduced by
improving the P&L for the worst case scenario ω∗. Is there any indication about
which risk factor ωi, i = 1, . . . ,M , is most promising for reducing the risk? To
answer this question, we will first investigate the effect of fixing ωj = y, where y
is a given value.

Definition 4.20 For normally distributed risk factors ω ∼ N (0,Σ) we define
the restricted ML problem as

MLj(α, y) = min v(ω)

s.t. ωTΣ−1ω ≤ cα

ωj = y.

For quadratic portfolios vq(ω), this restricted ML problem can be solved with the
Levenberg–Marquardt algorithm of Section 3.4.1 after some transformations:

Theorem 4.21 Let ω ∼ N (0,Σ) be an M–dimensional risk factor and vq(ω) =
1
2
ωTGω + gTω a quadratic P&L function, where G ∈ IRM×M is a symmetric

matrix and g ∈ IRM .
For every y ∈ IR there exist

• a symmetric matrix G̃ ∈ IR(M−1)×(M−1)

• a vector g̃ ∈ IR(M−1)

• a scalar c̃

• a positive definite matrix Σ̃ ∈ IR(M−1)×(M−1)

• a scalar c̃α,

such that the restricted ML problem MLj(α, y) = minωT Σ−1ω≤cα,ωj=y vq(ω) is equi-
valent to the transformed problem

ML(α) = min
1

2
ω̃T G̃ω̃ + g̃T ω̃ + c̃

s.t. ω̃T Σ̃−1ω̃ ≤ c̃α,

where ω̃ ∈ IR(M−1).
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Proof: Without loss of generality we may assume that the first risk factor is
fixed to ω1 = y. Then, the parameters of the quadratic ML problem can be
written as

G =

[
G1,1 GT

1

G1 G̃

]
, Σ−1 =

[
Σ−1

1,1 Σ−T
1

Σ−1
1 Σ̃−1

]
, g =

[
g1

ĝ

]
, ω =

[
ω1

ω̂

]
,

which represents a partition into the first column/row and the remaining (M−1)
ones. We define

ω̃ = ω̂ + ω1Σ̃Σ−1
1

g̃ = ĝ + ω1

[
G1 − G̃Σ̃(Σ−1

1 )
]

c̃ = ω1

[
g1 − ĝT Σ̃(Σ−1

1 )
]

+
1

2
ω2

1

[
G1,1 + (Σ−1

1 )T Σ̃G̃Σ̃(Σ−1
1 )

]
c̃α = cα + ω2

1

[
(Σ−1

1 )T Σ̃(Σ−1
1 )− Σ−1

1,1

]
,

where Σ̃ is the inverse of Σ̃−1. It is easy to verify that this choice satisfies

1

2
ωTGω + gTω =

1

2
ω̃T G̃ω̃ + g̃T ω̃ + c̃

and

ωTΣ−1ω − cα = ω̃T Σ̃−1ω̃ − c̃α,

for every scenario ω ∈ IRM . Hence, the two problems are equivalent.

Geometrically, fixing ω1 = y corresponds to cutting the M–dimensional ellipsoid
by a plane orthogonal to ω1, resulting in an (M − 1)–dimensional trust region
of ellipsoidal form. Before the minimization problem can be solved, the new
ellipsoid needs to be recentered at the origin. This is achieved by the above
transformation, which keeps the objective function quadratic by introducing a
new constant c̃.
The same kind of analysis can be performed for the restricted maximum profit
MPj(α, y) = maxωT Σ−1ω≤cα,ωj=y vq(ω). In both cases, fixing ωj = 0 corresponds
to eliminating the exposure to risk factor ωj since the P&L function vq(ω) no
longer depends on ωj.

Definition 4.22 Let ωML be the overall worst case scenario, i.e. the solution to
the problem minωT Σ−1ω≤cα

vq(ω), and ωMP the overall best case scenario, i.e. the
solution to maxωT Σ−1ω≤cα

vq(ω). For each risk factor ωj, j = 1, . . . ,M , we define

• marginal Maximum Loss: ∆MLj = vq(ω
ML)−MLj(α, 0)
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• marginal Maximum Profit: ∆MPj = vq(ω
MP)−MPj(α, 0)

• marginal Expected Value:10

∆EVj = E(vq(ω) | ωTΣ−1ω ≤ cα)− E(vq(ω) | ωTΣ−1ω ≤ cα, ωj = 0).

The comparison of these quantities for all risk factors ωj, j = 1, . . . ,M , gives
information about which risk factors have the greatest potential for reducing risk
(by eliminating positions which depend on these factors), without affecting the
profit potential too much.

Example 4.23 Figure 4.6 shows an example of the restricted Maximum Loss
MLj(α, y) and the restricted Maximum Profit MPj(α, y) for all feasible fixings
ωj = y. The scenario ωML

j , where the curve MLj(y) attains its minimum, is
identical to the jth component of the overall worst case scenario ω∗ (i.e. the
solution to minωT Σ−1ω≤cα

vq(ω) ).
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Figure 4.6: Marginal risk contributions of risk factor ωj

For this portfolio, eliminating exposure in risk factor j would reduce the over-
all Maximum Loss by ∆MLj. Since the corresponding decrease ∆MPj in the
maximum profit is considerably smaller, the risk of the portfolio can be reduced
without influencing the profit potential substantially.

10A formula to calculate the conditional expectations was presented in Corollary 4.9.
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4.3.2 Risk Maps

Whereas Section 4.1.1 shows how to determine the path of the worst case scenarios
by expansion of the trust region, this section addresses the question of how to
extend a one–dimensional path to M–dimensional regions. Our goal is to identify
regions, where the P&L is below (or above) an arbitrarily fixed value l, which is
called critical level :

Definition 4.24 Let l ∈ IR be a critical level. A scenario ω ∈ O is said to be
dangerous if its P&L v(ω) < l. Similarly, ω is a safe scenario if v(ω) > l.

A conceivable approach would be to determine the sets of all dangerous scenarios.
For quadratic P&L functions vq(ω), the level set L(l) = {ω ∈ IRM | vq(ω) = l} is
a second order surface (e.g. ellipsoid, cylinder, paraboloids, hyperboloids, cones,
planes), which can be described parametrically: in principle, it is possible to use
parametric equations to characterize the sets of safe and dangerous scenarios. In
practice, however, this is not promising since such equations are very difficult to
explicate and handle in high dimensional spaces.

Definition 4.25 For a given critical level l and a trust region T , the set U ⊆ IRM

is dangerous if v(ω) < l,∀ω ∈ T ∩ U . The set U is safe if v(ω) > l,∀ω ∈ T ∩ U .

Sets with particularly simple form are one–point intervals Ij(y) = {ω ∈ IRM |
ωj = y}; they represent an (M − 1)–dimensional hyperplane in the risk factor
space.

Theorem 4.26 The one–point interval Ij(y) = {ω ∈ IRM | ωj = y} is dangerous
with respect to the critical level l and the trust region T = {ω ∈ IRM | ωTΣ−1ω ≤
cα} if and only if MPj(α, y) < l.

Proof: Let U = {ω ∈ IRM | ωTΣ−1ω ≤ cα, ωj = y}. By Definition 4.20, the
restricted Maximum Loss problem is MPj(α, y) = maxω∈U v(ω). Obviously, we
have MPj(α, y) < l if and only if v(ω) < l for every ω ∈ U .

Corollary 4.27 The one–point interval Ij(y) = {ω ∈ IRM | ωj = y} is safe with
respect to the critical level l and the trust region T = {ω ∈ IRM | ωTΣ−1ω ≤ cα}
if and only if MLj(α, y) > l.

Proof: As before, the condition MLj(α, y) = minωT Σ−1ω≤cα,ωj=y v(ω) > l is

equivalent to v(ω) > l,∀ω ∈ {ω ∈ IRM | ωTΣ−1ω ≤ cα, ωj = y}.

Hence, the problem ‘is the one–point interval Ij(y) dangerous?’ can be answered
by solving the restricted maximum profit problem MPj(α, y). Next, we will
generalize the concept of one–point intervals by introducing one–dimensional
intervals Ij(y1, y2) = {ω ∈ IRM | y1 ≤ ωj ≤ y2}. By Definition 4.25, such sets are
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dangerous with respect to the critical level l if v(ω) < l for every ω ∈ T , ωj ∈
[y1, y2].

For quadratic P&L functions vq(ω), dangerous and safe one–dimensional intervals
can be determined numerically from the graphs MPj(α, y) and MLj(α, y):

Example 4.28 Figure 4.7 shows the dangerous interval IDj and the safe interval
ISj of risk factor ωj for a critical level of l = −10. By Theorem 4.26 and Corollary
4.27, the dangerous interval corresponds to the segment where the iso-P&L line
of level l lies above the function MPj(y), and the safe interval is defined by the
segment where the iso-P&L line lies below MLj(y)
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Figure 4.7: Dangerous and safe one–dimensional intervals

Theorem 4.29 For a given critical level l, dangerous one–dimensional intervals
IDj (y1, y2) and safe intervals ISj (y3, y4) do never intersect.

Proof: Assume — ad absurdum — that there exists a y ∈ IR which belongs
to both intervals [y1, y2] and [y3, y4]. Since IDj (y1, y2) is a dangerous one–
dimensional interval, Theorem 4.26 implies that MPj(α, y) < l. On the other
hand, ISj (y3, y4) is safe and therefore MLj(α, y) > l by Corollary 4.27. This leads
to the contradiction MPj(α, y) < l < MLj(α, y).

Remark 4.30 There may exist various disjoint dangerous (or safe) intervals
ID1
j , ID2

j , . . . for each risk factor ωj. An example can be found in Figure 4.7 if a
critical level of l = 10 is chosen.
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One–dimensional intervals are particularly easy to interpret: a scenario ω ∈ IRM

is dangerous as soon as one of its components ωj belongs to a one–dimensional
dangerous interval IDj , j = 1, . . . ,M .11

Example 4.31 Figure 4.8 shows the trust region T of a portfolio depending on
two risk factors, together with the dangerous and safe regions which are implied
by the one–dimensional intervals ID1 , ID2 and IS1 .

I2
D

I1
D I1

S

T
ω2

ω1

Figure 4.8: Dangerous and safe regions induced by one–dimensional intervals

It should be noticed that all the statements which have been made about regions
are only valid for the feasible scenarios, i.e. those scenarios which belong to the
trust region T .12 Since the set of the feasible scenarios grows with increasing
confidence level α, the optimum of the problem MLj(α, y) decreases and the
optimum of the problem MPj(α, y) increases. Therefore, the identifiable safe and
dangerous regions might be partially reduced the greater α is chosen, i.e. the
more scenarios are examined.

11Of course, an analogous statement holds for safe intervals: ω ∈ IRM is safe as soon as one
of its components ωj belongs to a one–dimensional safe interval IS

j , j = 1, . . . ,M .
12See Definition 4.25.
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Chapter 5

Risk Adjusted Performance
Measurement

5.1 Introduction

In the preceding part of this thesis, the problem of risk measurement has primarily
been seen from a point of view of prudence: risk has been quantified to determine
the amount of capital which has to be held as a cushion against potential future
losses. However, in today’s financial institutions, there is a rising demand for
risk/reward assessments. Increasing market competition and more demanding
shareholders compel to progress from a passive measurement/limitation of risks
to an active management of risks: banks are forced to improve their performance,
i.e. to optimize the relation between returns and risks.
Risk adjusted performance measurement (RAPM) is an attempt to provide a
common yardstick which allows to contrast risk and return of portfolios, business
units, business lines or whole companies. Such performance measures are the
core elements for tackling various practical problems:

• valuation of companies (determining the shareholder value of a firm)

• financial governance (fixing financial goals and measuring the degree of their
achievement)

• performance related compensation and incentive schemes

• allocation of capital.

The last item exemplifies the need for performance measures which are based
on the same risk measures as those used for the risk limitation: on the one
hand, capital can be viewed as a scarce resource whose minimal requirements
are imposed by supervisory regulations. On the other hand, the more capital a
financial institution holds, the more profit needs to be generated to satisfy the
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shareholders’ expectations. Hence, the question of how much capital (i.e. risk)
to allocate to each business is recognized to be crucial for the management of a
firm.
In the sequel, several methods for risk adjusted performance measurement will
be discussed, and it will be shown that these methods are strongly related to
each other. At this point, however, it should be mentioned that there is no
standard terminology in the literature; the same name can be found for different
methodologies, and different authors refer to one technique by different names.
Nonetheless, all methods have obviously one thing in common: they all compare
profits against risk.

5.2 Return on Capital

We will use the capital asset pricing model (CAPM)1 as a motivation for a mean-
ingful definition of a ‘return on capital’ ratio. If the asset returns ri, i = 1, . . . , N ,
are jointly normally distributed, then the CAPM postulates that in equilibrium
the relation

E(ri) = rf + βi[E(rm)− rf ], i = 1, . . . , N (5.1)

holds, where rm is the return of the market portfolio m and rf is the (determin-
istic) risk free rate of return. In Section 2.3.1 it has been shown that the optimal
choice of the asset beta is βi =

ρi,mσi

σm
, where σi denotes the standard deviation

of asset i, σm the standard deviation of the market portfolio and ρi,m is the cor-
relation between asset i and the market portfolio. Thus, equation (5.1) can be
reformulated as

E(ri)− rf
σi

= ρi,m
E(rm)− rf

σm

, i = 1, . . . , N, (5.2)

where the quantity E(ri) − rf is called differential return of asset i and
E(ri)−rf

σi

is referred to as Sharpe ratio.
Note that all elements of equation (5.2) represent relative amounts (i.e. they
have no unit of measurement). Hence, we can replace returns ri by profits Ri

(i.e. net income minus opportunity costs of financing)2 and asset volatilities by
profit volatilities, without affecting the value of the quotients. If we assume that

1See Copeland and Weston (1995), pp. 193.
2In this context, profit is defined as net income minus opportunity costs of financing: let w

be the value of an asset at the beginning of the period and w̃ its value at the end of the period.
Then, the profit generated by this asset is R = (w̃ − w) − wrf , where rf denotes the funding
rate (which is supposed to be identical to the risk free rate).
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the regulatory capital requirement Ci is a multiple ϑ of the profit volatility,3 we
get:

Theorem 5.1 Let ri be the return of asset i, rf the risk free interest rate and σi

the asset volatility. If the capital requirement Ci for the holdings in asset i is a
multiple ϑ of the profit volatility, then Ri

Ci
= 1

ϑ

ri−rf

σi
, where Ri denotes the profit

generated by asset i.

Proof: Let wi be the value of asset i at the beginning of the period and w̃i its
value at the end of the period. By definition, the return is equal to ri = w̃i−wi

wi
.

Since the profit generated by asset i is Ri = (w̃i − wi)− wirf , we get

1

ϑ

ri − rf
σi

=
1

ϑ

(w̃i − wi)− wirf
wiσi

=
Ri

Ci

,

simply because wiσi is the volatility of the profit and therefore Ci = ϑwiσi.

Instead of considering a market of individual assets, we can alternatively interpret
the market portfolio m as a firm with business units i = 1, . . . , N . In this context,
Ci corresponds to the capital requirement of business unit i, and the former asset
profit Ri to the risk adjusted net return of business unit i, which comprises

+ revenues

– operating costs

– taxes

– financing costs

– expected losses.

The deduction of the financing costs from the revenues corresponds to the sub-
traction of the risk free interest rate rf in formula (5.2). Moreover, taxes and
expected losses are handled like an operating expense. Indeed, expected losses
may be seen as the price which has to be paid to run a business and they should
therefore be covered by provisions.4

Definition 5.2 Let Ri be the net operating profit of business unit i and Ci the
capital requirement for this business unit. The ‘Return on Capital’ of business
unit i is defined as RoCi = Ri

Ci
.

3This is the case in the Basle Committee’s regulations for internal (i.e. VaR based) models:
for linear portfolios, VaR is proportional to the P&L volatility σv (cf. Theorem 1.16), and the
regulatory capital requirement is C = ϑz99%σv, where typically 3 ≤ ϑ ≤ 4 and z99% is the 99
percent quantile of the standard normal distribution.

4As explained in Chapter 1, risk (and hence capital) accounts only for the variability of the
losses.
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The coefficient Ri

Ci
is also called ‘Risk Adjusted Return on Risk Adjusted Cap-

ital’ (RARORAC)5, which stresses the fact that there is an adjustment for the
expected losses in the numerator and that the capital is a function of the risk.6

Example 5.3 Suppose that a business unit holds assets with return r = 10% and
volatility σ = 5%, and that the risk free interest rate is rf = 4%. If the value
of the assets is 1000 units at the beginning of the period, the profit turns out to
be R = 1000(0.10 − 0.04) = 60 units. Assuming that the capital requirement is
ϑ = 3 times the profit volatility, it follows that C = 3 ·1000 ·0.05 = 150 units and
consequently RoC = R

C
= 60

150
= 0.4, which is equivalent to 1

ϑ

r−rf

σ
= 1

3
0.10−0.04

0.05
.

It should be noted that Definition 5.2 implies that a riskless asset leads to a RoC
quotient with numerator and denominator identical to 0.
Finally, if we know the correlation ρi,m between the profit Ri of business unit i
and the profit Rm of the whole firm, we can formulate a relationship between the
RoC of a business unit i and the RoC of the firm:

Corollary 5.4 Let the profits Ri and Rm be normally distributed with correlation
ρi,m. If the capital requirements Ci and Cm are a multiple ϑ of the profits’ standard
deviations, then E(RoCi) = ρi,mE(RoCm) for i = 1, . . . , N .

Proof: Theorem 5.1 implies that Ri

Ci
= 1

ϑ

ri−rf

σi
and Rm

Cm
= 1

ϑ

rm−rf

σm
. The result

follows from formula (5.2) after taking the expectations.

5.3 Economic Value Added

It is important to understand that it is not sufficient for a firm to produce profits.
In fact, the shareholders require to be adequately compensated for their invest-
ment risk. This can be seen in the CAPM model, where equation (5.1) states
that the required return ri increases with increasing volatility σi. Hence, the
more capital Ci a business has to hold (from a regulatory perspective), the more
profit Ri has to be generated to fulfil the shareholders’ expectations. If we assume
that the shareholders demand to be compensated by a return of κ, then we can
quantify the wealth produced in one period by the concept of Economic Value
Added (EVA):7

Definition 5.5 Let R be the net operating profit of the firm, C the capital re-
quirement and κ the cost of capital. The Economic Value Added is defined as
EVA = R− κC.

5See GARP (1996), p. 146.
6The terms ‘Risk Adjusted Return on Capital’ (RAROC) and ‘Return on Risk Adjusted

Capital’ (RORAC) are also used for risk/return ratios, cf. Matten (1996), p. 59.
7See Hostettler (1997).
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Hence, EVA is equal to the net profit less the costs for capital employed to
produce this profit. Clearly, an EVA > 0 means that value for the shareholders
is generated, whereas EVA < 0 indicates that economic value is destroyed.
In the economic literature, R is also called NOPAT (net operating profit after
taxes), C is NOA (net operating assets) and κ is referred to as WACC (weighted
average cost of capital). The meaning of these quantities is the following:

• R measures the net operating profit (minus taxes), without taking into
consideration any accounting elements such as depreciation

• C is the capital which has to be held as a cushion against unexpected losses

• κ is the return required by the shareholders.

The performance measure EVA can be used to identify where value is created
in a firm and where it is destroyed. However, the EVA of different companies
cannot be compared directly since EVA is measured in nominal units and, thus,
depends on the size of the firm. If EVA is divided by the capital C, we get the
so–called value spread :

Definition 5.6 Let R be the net operating profit, C the capital requirement and
κ the cost of capital. The value spread is VS = R

C
− κ.

Using Definition 5.2, we can express the value spread in terms of return on capital:
VS = RoC−κ, which leads to the hurdle rate RoC ≥ κ for profitable businesses.

Example 5.7 In Example 5.3, the net profit was R = 60 units and the capital
requirement was C = 150 units. If the shareholders require a return of κ = 20%,
we see that an economic profit of EVA = 60 − 0.2 · 150 = 30 units is generated.
The fact that this business is profitable is also reflected by the positive value spread
of VS = 60

150
− 0.2 = 0.2.

5.4 Shareholder Value Analysis

The concept of value spread cannot be used for capital allocation purposes be-
cause it is an ex–post, single period measure. This section discusses the applic-
ation of EVA forecasts for defining a future oriented, multi–period risk adjusted
performance measure, which we call Market Value Added (MVA).
In essence, MVA is the net present value of estimated future EVAs. The EVA
forecasts are obtained from estimates of the net profit Rt and of the capital
requirement Ct for the next periods t = 1, . . . , N , assuming that the cost of
capital κ is constant: EVAt = Rt − κCt. The calculation of MVA is based on
discounted future cash flows, using a discount rate commensurate with the risks
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involved.8 In our performance measurement framework, this concept translates
into:

Definition 5.8 Let EVAt be the EVA forecast for each of the next periods t =
1, . . . , N , with constant cost of capital κ. We assume that after period N the
economic value added is constant and equal to EVA∞ in each period t > N .
Then, the market value added is defined as MVA =

∑N
t=1

EVAt

(1+κ)t + EVA∞
κ(1+κ)N .

Note that this definition employs the cost of capital κ as ‘risk adjusted’ discount
rate. Furthermore, the hypothesis that there exists a final value EVA∞ implies
that both Rt and Ct are assumed to be constant for t > N , i.e. that the firm
has reached a steady state after period N ; the term EVA∞

κ(1+κ)N reflects the value of
a perpetuity starting after period N .
Keeping in mind the meaning of EVA, it becomes obvious that MVA measures
the value (in today’s units) which will be created by a company in the future.
MVA is just one constituent of the total value FV of a firm; indeed, FV can be
decomposed into

FV = MVA + C0 + VNO, (5.3)

where C0 is the capital held in the present period and VNO denotes the value
of all nonoperating assets. Since FV is equal to the value of equity plus debt
plus reserves, formula (5.3) can be used to calculate the shareholder value of a
firm (i.e. the value of equity). We can even show that MVA is identical to the
results obtained with classical concepts, which are typically based on discounted
free cash flows (i.e. the cash flows generated for the shareholders):

Definition 5.9 Let FCFt be the free cash flow in period t = 1, . . . , N . We
assume that the free cash flow after period N is constantly FCF∞. Then, the
shareholder value analysis (SVA) for a discount rate of r is defined as SVA =∑N

t=1
FCFt

(1+r)t + FCF∞
r(1+r)N .

This definition of SVA uses the same hypotheses regarding the final value FCF∞
as Definition 5.8. The free cash flow FCFt of period t is identical to the net profits
Rt minus the net investments It (i.e. investments minus depreciation) of period
t:

FCFt = Rt − It, (5.4)

where the investments It are supposed to be made at the end of period t.

8This fundamental principle of finance is, for example, applied for pricing financial instru-
ments or for evaluating investment projects.
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Theorem 5.10 Denote by C0 the capital of the present period. If the discount
rate in the shareholder value approach is identical to the cost of capital κ, then
SVA = MVA + C0.

Proof: First, we note that the investments It, which are made at the end of
period t, have to be financed by increasing the capital Ct+1 of period (i + 1):
Ct+1 = Ct + It, which can be restated as Ct = C0 +

∑t−1
k=1 Ik for t = 1, . . . , N . By

Definition 5.8, we have a constant profit R∞ and a constant capital requirement
C∞ after period N . Thus, EVA∞ = R∞ − κC∞ and FCF∞ = R∞, and it follows
that

MVA + C0 =
N∑
t=1

Rt

(1 + κ)t
− κ

{
N∑
t=1

C0

(1 + κ)t
+

N∑
t=1

∑t−1
k=1 Ik

(1 + κ)t

}

+
R∞

κ(1 + κ)N
− κ

{
C0

κ(1 + κ)N
+

∑N
k=1 Ik

κ(1 + κ)N

}
+ C0. (5.5)

Furthermore, equation (5.4) implies

SVA =
N∑
t=1

Rt

(1 + κ)t
−

N∑
t=1

It
(1 + κ)t

+
R∞

κ(1 + κ)N
. (5.6)

Since the expression
∑N

t=1
Rt

(1+κ)t + R∞
κ(1+κ)N appears in both formulas (5.5) and

(5.6), it remains to show that

−κ

{
N∑
t=1

C0

(1 + κ)t
+

C0

κ(1 + κ)N

}
+ C0 = 0 (5.7)

and

κ

{
N∑
t=1

∑t−1
k=1 Ik

(1 + κ)t
+

∑N
k=1 Ik

κ(1 + κ)N

}
=

N∑
t=1

It
(1 + κ)t

. (5.8)

Let us start with (5.7): if C0 = 0, the relation is satisfied. Otherwise, we divide

by C0 and get κ
∑N

t=1
1

(1+κ)t + 1
(1+κ)N − 1 = 0. From

∑N
t=0

1
(1+κ)t = (1+κ)N+1−1

κ(1+κ)N , the
result follows immediately.
If we multiply equation (5.8) by (1 + κ)N , we obtain

κ

N∑
t=1

t−1∑
k=1

Ik(1 + κ)N−t +
N∑
k=1

Ik =
N∑
k=1

Ik(1 + κ)N−k,

85



which is satisfied if for every k = 1, . . . , N the relation κIk
∑N

t=k+1(1+κ)N−t+Ik =
Ik(1 + κ)N−k holds. If Ik = 0, the relation is satisfied; else we divide
by Ik and get κ

∑N−k−1
t=0 (1 + κ)t + 1 = (1 + κ)N−k, which is true since∑N−k−1

t=0 (1 + κ)t = 1−(1+κ)N−k

1−(1+κ)
.

Example 5.11 We assume that in each future period the net profit will con-
stantly be R = 60 units and the capital requirement C = 150 units. If the
shareholders require a return of κ = 20% per period, it follows that the value
generated for the shareholders is MVA = 60−0.2·150

0.2(1.0+0.2)
= 125 units. Thus, the total

shareholder value (including today’s equity) is SVA = 125 + 150 = 275 units.

Hence, we can calculate the value created for the shareholders from forecasts of
the net profit Rt and the capital requirement Ct, which is itself a function of the
risk ρ(v) of a portfolio.9 This allows us, by equation (5.3), to estimate the value
of a company or the value of the equity, which result from the future effects of
today’s decisions. In this sense, the quantities risk and return can be used as
basic elements for management decisions at the firm level.
However, the availability of a risk adjusted performance measure provides no
answer to the question of how much capital to allocate to which business. In
fact, the relation between risk and return is only one element which may affect
the decision: many other, non quantifiable aspects such as the state of a market,
the strategy of the competitors, the structure of the firm, etc. need also to be
respected in the decision process. Thus, the problem of capital allocation is still
unresolved and offers a wide area for research.

9See also formula (1.8).

86



Appendix A

Stochastic Processes

This appendix presents the basics of stochastic calculus, which are referred to
in Chapter 1. The core of risk management is the analysis of market rates.
Mathematically, the evolution of a market rate can be modelled as a stochastic
process :

Definition A.1 A stochastic process is a family of random variables (Xt)t≥0

defined on the probability space (Ω,A,P) with values in a measurable space (E, E).

In practice, the index t stands for time and the process can be understood as a
function X : IR+ × Ω → E. The filtration Ft represents all the knowledge of the
process at time t:

Definition A.2 Let (Ω,A,P) be a probability space. A family (Ft)t≥0 of σ–
algebras of A is a filtration if Fs ⊆ Ft ⊂ A for every 0 ≤ s < t.

Definition A.3 A process (Xt)t≥0 is said to be adapted to (Ft)t≥0 if Xt is Ft–
measurable for every t.

We can use the process (Xt)t≥0 itself to define a filtration:

Assumption A.4 In the sequel, we will always take the natural filtration of the
process (Xt)t≥0:

Ft = σ(Xs, 0 ≤ s ≤ t) ∪ {A ∈ A | P(A) = 0}.1

Among the stochastic processes, Brownian motion2 plays a particularly important
role:

Definition A.5 The process (Xt)t≥0 with X : IR+ × Ω → IR is called Brownian
motion if it has independent and stationary increments and if its trajectories are
continuous (P a.s.).

1Of course, each process (Xt)t≥0 is adapted to his natural filtration.
2Brownian motion is also referred to as Wiener process.
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If the Brownian motion (Bt)t≥0 satisfies the conditions B0 = 0 (P a.s.), E(Bt) = 0
and E(B2

t ) = t, then this process is called standard Brownian motion. In this case,
it can be shown that Bt ∼ N (0, t) and indeed more generally Bt−Bs ∼ N (0, t−s)
for 0 ≤ s < t. Standard Brownian motion is used to define the class of Itô
processes :

Definition A.6 We say that (Xt)0≤t≤t̃ is an Itô process if

Xt = X0 +

∫ t

0

Ksds +

∫ t

0

HsdBs, ∀t ≤ t̃, (P a.s.),

where X0 is F0–measurable, (Kt)0≤t≤t̃, (Ht)0≤t≤t̃ are both Ft–adapted and∫ t̃

0
|Ks|ds < ∞,

∫ t̃

0
|Hs|2ds < ∞ (P a.s.).

Finally, Itô’s lemma shows how to differentiate a function g(Xt) of an Itô process:

Theorem A.7 Let (Xt)0≤t≤t̃ be an Itô process Xt = X0 +
∫ t

0
Ksds +

∫ t

0
HsdBs

and g twice continuously differentiable (i.e. g ∈ C2). Then

g(Xt) = g(X0) +

∫ t

0

g′(Xs)dXs +
1

2

∫ t

0

g′′(Xs)d 〈X,X〉s,

where 〈X,X〉t =
∫ t

0
H2

sds and
∫ t

0
g′(Xs)dXs =

∫ t

0
g′(Xs)Ksds +

∫ t

0
g′(Xs)HsdBs.

Proof: A proof of this theorem is presented in Karatzas and Shreve (1988), pp.
149.

It should be noted that this theorem is often written in differential form as
dg(Xt) = g′(Xt)dXt + 1

2
g′′(Xt)d 〈X,X〉t.
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Appendix B

Distributions of Quadratic
Functions

In Section 1.3.1 we discussed the calculation of VaR for quadratic functions, as
described by Rouvinez (1997). Starting point was the P&L function vq(ω) =
1
2
ωTGω + gTω of multinormally distributed risk factors ω ∼ N (0,Σ), which was

transformed into the separated system

v̌q(ω̌) =
∑
j∈I

1

2
(G̃)j,jω̌

2
j +

∑
j∈J

g̃jω̌j −
1

2

∑
j∈I

g̃2
j

(G̃)j,j
(B.1)

of independent random variables ω̌j, j = 1, . . . ,M , where I = {j ∈ {1, . . . ,M} |
(G̃)j,j �= 0} and J = {j ∈ {1, . . . ,M} | (G̃)j,j = 0}.
In this section, we will first develop an expression for the characteristic function
ϕv̌q(s) of the separated system v̌q(ω̌). Then, we will use the inversion theorem
to calculate the probability P(v̌q(ω̌) ≤ z) for a given fractile z. Finally, we can
apply a bisectionning technique for determining that value z∗ for which P(v̌q(ω̌) ≤
z∗) = 1 − α. Since VaR is the (1 − α)–quantile of the P&L distribution, we get
that VaR(α) = z∗.

In expression (B.1), the random variables ω̌j, j ∈ J , are standard normally dis-
tributed whereas the quantities ω̌2

j , j ∈ I, represent noncentral χ2 variables with

one degree of freedom and noncentrality parameter (
g̃j

(G̃)j,j
)2. In order to simplify

the notations, we define

Definition B.1 For each j ∈ I we set Yj = 1
2
(G̃)j,jω̌

2
j ; the normal variables are

aggregated into YJ =
∑

j∈J g̃jω̌j and c = −1
2

∑
j∈I

g̃2
j

(G̃)j,j
. The new P&L function

v(Y ) is then defined as v(Y ) =
∑

j∈I Yj + YJ + c.

This new formulation has the same characteristics as the separated system v̌q(ω̌):
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Lemma B.2 The random variables YJ and Yj, j ∈ I, are mutually independent
and the P&L functions are identical: v(Y ) = v̌q(ω̌).

Proof: The mutual independence of the random variables ω̌j implies that YJ

and Yj, j ∈ I, are independent since each ω̌j is element of exactly one of the new
variables. The fact that

∑
j∈I Yj =

∑
j∈I

1
2
(G̃)j,jω̌

2
j and the definitions of YJ and

c imply that

v̌q(ω̌) =
∑
j∈I

1

2
(G̃)j,jω̌

2
j +

∑
j∈J

g̃jω̌j −
1

2

∑
j∈I

g̃2
j

(G̃)j,j
=

∑
j∈I

Yj + YJ + c = v(Y ).

Lemma B.3 The distribution of the random variable YJ is YJ ∼ N (0,
∑

j∈J g̃2
j ).

Proof: YJ is a linear combination of independent standard normal variables
with E(YJ) = 0 and Var(YJ) =

∑
j∈J g̃2

j .

Since we know the distribution of the random variables YJ and Yj, j ∈ I, we know
also their characteristic functions:

Theorem B.4 The characteristic functions of the random variables are:

ϕYj
(s) = [1− i(G̃)j,js]

− 1
2 exp

(
ig̃2

j s

2(G̃)j,j[1− i(G̃)j,js]

)
, j ∈ I

ϕYJ
(s) = exp

(
−

∑
j∈J g̃2

j s
2

2

)

ϕc(s) = exp(ics),

where i =
√
−1.

Proof: From Definition B.1 it follows that for each j ∈ I the random variable
Yj is a multiple of a noncentral χ2 variable with one degree of freedom and

noncentrality parameter ζj = (
g̃j

(G̃)j,j
)2. Since the characteristic function of such

a variable is equal to (1 − 2is)−
1
2 exp( iζs

1−2is
),1 the results for ϕYj

(s) are a direct
consequence of the fact that ϕθY (s) = ϕY (θs) for θ ∈ IR.
Moreover, the characteristic function of a normal variable2 with mean 0 and
variance σ2 is exp(−σ2s2

2
), and the definition of the characteristic function of a

random variable Y : ϕY (s) = E(exp(iY s)) implies that ϕc(s) = exp(ics).

1See Johnson and Kotz. (1970), p. 134.
2See Johnson et al. (1994), p. 89.
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Corollary B.5 The characteristic function ϕv(s) of the P&L function v(Y ) is

ϕv(s) =
∏
j∈I

{
[1− i(G̃)j,js]

− 1
2 exp

(
ig̃2

j s

2(G̃)j,j[1− i(G̃)j,js]

)}

· exp

(
ics−

∑
j∈J g̃2

j s
2

2

)
.

Proof: This result is simply due to the fact that the characteristic function of
a sum of independent variables is the product of the characteristic functions of
the individual variables.

Knowing the characteristic function of v(Y ), we can use the inversion theorem to
calculate the probability P(v(Y ) ≤ z) for a given fractile z:

Theorem B.6 Let Y be a random variable with characteristic function ϕY (s).
If E(|Y |) < ∞ and if there exist θ1, θ2 > 0 such that |ϕY (s)| < θ1s

−θ2 ,∀s > 1,
then

P(Y ≤ z) =
1

2
+

1

2π

∫ ∞

0

exp(izs)ϕY (−s)− exp(−izs)ϕY (s)

is
ds.

Proof: The elements of the proof are given in Gil–Pelaez (1951) and Davies
(1973).

Both conditions of the theorem are satisfied for the P&L function v(Y ): first,
E(|v|) ≤ ∑

j∈I E(|Yj|) + E(|YJ |) + |c| < ∞. Second, the condition |ϕv(s)| <

θ1s
−θ2 ,∀s > 1 is satisfied because ϕv(s) is the product of characteristic func-

tions of normal and noncentral χ2 variables, which all satisfy this condition in-
dividually.3 Hence, we can apply Theorem B.6 to calculate P(v(Y ) ≤ z) for
a given fractile z. Since VaR is the (1 − α)–quantile of the P&L distribution
v(Y ), we can use a bisectionning technique to determine that value z∗ for which
P(v(Y ) ≤ z∗) = 1− α.

3The constant c has no influence since |ϕc(s)| ≡ 1 and, excluding the case where we have
no risk factors in the model, there is at least one normal or χ2 variable.
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Glossary of Notation

a M–dimensional vector of linear P&L function vl(ω) = aTω
b Vector of linear constraints: Aω ≤ b
c Constant in P&L function, e.g. vq(ω) = 1

2
ωTGω + gTω + c

cα α–quantile of χ2 distribution with M degrees of freedom
ei ith eigenvector of matrix G

f(·) Density function of a random variable
g M–dimensional vector of P&L function vq(ω) = 1

2
ωTGω + gTω

h(ρ) Transformation of risk measure ρ(v) into capital charge
k Number of scenarios chosen on each diagonal to approximate quad-

ratic P&L vq(ω)
l Critical level of P&L
n Number of scenarios in the set S = {ω(1), . . . ω(n)}

p(ψ̄) Profit/Loss incurred at time T due to expected outcome ψ̄

p
(·)
i Position (market value) in risk factor ωi

r(v) Capital requirement for portfolio v
rI Return of equity index I
rj Return of stock j
t Time

u(ψ) Value of portfolio for market rates ψ
v(ω) Profit/Loss of scenario ω
vl(ω) Linear P&L function vl(ω) = aTω, a ∈ IRM

vq(ω) Quadratic P&L function vq(ω) = 1
2
ωTGω + gTω

x Vector used for calculating the best fitting quadratic approximation
zα α–quantile of standard normal distribution
A Matrix of linear constraints: Aω ≤ b

(Bt) Standard Brownian motion
Ci Capital requirement of business unit i

Corr(·, ·) Correlation of random variables
Cov(·, ·) Covariance of random variables

D Polytope of feasible scenarios
E(·) Expected value of a random variable
EV Expected P&L on surface of trust region
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EVAi Economic Value Added by business unit i
G Symmetric matrix of IRM×M of quadratic P&L function vq(ω) =

1
2
ωTGω + gTω

I Identity matrix
Ij(y) One–point interval, i.e. subspace Ij(y) = {ω ∈ IRM | ωj = y}

M Number of risk factors ω1, . . . , ωM

ML(α) Maximum Loss for confidence level α
MLj(α, y) Maximum Loss if risk factor ωj is fixed to ωj = y

MP(α) Maximum Profit for confidence level α
MPj(α, y) Maximum Profit if risk factor ωj is fixed to ωj = y

MVA Market Value Added
P(·) Probability of a random variable

R Correlation matrix
Ri Net operating profit (after taxes) of business unit i

RoCi Return on Capital of business unit i
S Scenario matrix used to calculate best fitting quadratic approxim-

ation vq(ω)
SVA Shareholder Value Analysis

T Length of holding period [0, T ]
Tr(·) Trace of a matrix

U Cholesky decomposition of covariance matrix Σ = UTU

V Diagonal matrix of standard deviations: (V )i,i =
√

(Σ)i,i
Var(·) Variance of a random variable

VaR(α) Value–at–Risk for confidence level α
W (α) Weighting matrix for confidence level α, i.e. (W )i,i is the weight of

scenario ω(i), i = 1, . . . , n
(Xt) Stochastic process

α Confidence level, α ∈ [0, 1]
β, γ Parameters used to control the smoothness of the weighting func-

tion W (α)
δ First order price sensitivity of an instrument
κ Cost of capital, i.e. return required by the shareholders
λi ith eigenvalue of matrix G
µ Lagrange multiplier
ν Variable used in the Levenberg–Marquardt algorithm (playing the

role of a Lagrange multiplier)
ξ Vector ξ = (ξ(1), . . . , ξ(n)) of scenario P&Ls, where ξ(i) = v(ω(i))

ρ(v) Risk measure of portfolio v
ψ Market rates ψ = (ψ1, . . . , ψM) at time T
ψ0
i Market rate i at time 0

ψσ,i Volatility of asset i
ψ̄ Expected value of market rates at time T , i.e. ψ̄ = E(ψ)
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ω Risk factor ω = (ω1, . . . , ωM); represents deviations in market
rates, i.e. ω = ψ − ψ̄

ω(i) Element of the scenario set S = {ω(1), . . . ω(n)}
ωσ,i Volatility risk factor of asset i

Γ Second order price sensitivity of an instrument
Γc(·) Incomplete gamma function

Σ Covariance matrix of risk factors: ω ∼ N (0,Σ)
Ω Probability space

N (0,Σ) Normal distribution with mean 0 and covariance matrix Σ
O Set of realizable scenarios, O ⊆ IRM

P Set of scenario P&Ls: P = {ξ(1), . . . , ξ(n)}
S Set of scenarios {ω(1), . . . , ω(n)} used to construct quadratic ap-

proximation vq(ω)
T Trust region with probability P(T ) = α
U Subset of risk factors, U ⊆ IRM

V Set of all P&L functions v(ω)
y+, y− Positive and negative parts of y ∈ IR, i.e. y+ = max{0, y} and

y− = min{0, y}
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