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Abstract:

E�ective risk management requires adequate risk measurement. A basic problem herein
is the quanti�cation of market risks: what is the overall e�ect on a portfolio if market
rates change? The �rst chapter gives a brief review of the standard risk measure
\Value{At{Risk" (VAR) and introduces the concept of \Maximum Loss" (ML) as a
method for identifying the worst case in a given scenario space, called \Trust Region".
Next, a technique for calculating e�ciently ML for quadratic functions is described;
the algorithm is based on the Levenberg{Marquardt theorem, which reduces the high{
dimensional optimization problem to a one{dimensional root �nding.
Following this, the idea of the \Maximum Loss Path" is presented: repetitive calcula-
tion of ML for a growing trust region leads to a sequence of worst cases, which form a
complete path. Similarly, the paths of \Maximum Pro�t" (MP) and \Expected Value"
(EV) can be determined; the comparison of them permits judgements on the quality
of portfolios. These concepts are also applicable to non{quadratic portfolios by using
\Dynamic Approximations", which replace arbitrary pro�t and loss functions with a
sequence of quadratic functions.
Finally, the idea of \Maximum Loss Distribution" is explained. The distributions of
ML and MP can be obtained directly from the ML and MP paths. They lead to lower
and upper bounds of VAR and allow statements about the spread of ML and MP.

Keywords: Risk Measurement | Market Risk | Value At Risk | Maximum Loss
Optimization
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Chapter 1

Introduction

1.1 Problem Statement

An increasing number of complex �nancial instruments is used in today's business.
Whereas many quantitative techniques for the analysis of a single instrument are
well established, there is still a lack of mathematical methods for estimating the
cumulative risk of a portfolio. One particular problem is the measurement of
market risks: what loss can a portfolio su�er from if the market rates vary? In
this paper we present new concepts, new models and new quantitative techniques
to answer this question.
Mathematically, the problem can be formulated as follows: market rates (e.g.
commodity prices, foreign exchange rates, equity indices, interest rates) are rep-
resented by risk factors !1; : : : ; !M , shifted such that !i = 0 corresponds to the
actual value of market rate i. Risk factors behave randomly: for a time interval
of length t (holding period of the portfolio), ! = (!1; : : : ; !M) are supposed to
be multinormally distributed variates with mean 0 and covariance matrix �t (cf.
Appendix A).
The e�ect of a change in the risk factors ! can be determined by revaluating of
the portfolio. The change in portfolio value | called \pro�t and loss" (P&L)
| is denoted v(!); the de�nitions imply that v(0) = 0.

1.2 Value{At{Risk (VAR)

A widely used measure of market risk is \Value{At{Risk" (cf. [RiskMetrics],
[Beckstr�om and Campbell]) or VAR, which has an intuitive interpretation, but
requires in practice often time consuming calculations. For a �xed con�dence
level �, VAR can be de�ned as:

3



The level of loss
� which is exceeded in (100� �) percent of all situations
� if the portfolio's value is examined after t days (holding period).

Mathematically, VAR is the �{quantile of the P&L distribution (� is typically
chosen 95 % or 99 %). For a linear portfolio (i.e., v(!) = �T!), the normal
distribution of the risk factors implies that v(!) � N (0; �T�t�). Therefore, VAR
can be written analytically as

VAR = �z�
q
�T�t�; (1.1)

where z� denotes the �{quantile of the standard normal distributionN (0; 1). But
if the portfolio contains one or more nonlinear instruments, there is no analytical
expression for VAR. This is due to the fact that it is not possible to calculate
the P&L distribution in the general (i.e., nonlinear) case. However, it is possi-
ble to calculate numerically the cumulative distribution of a quadratic portfolio
v(!) = 1

2
!TG! + �T!, where G is a symmetric M �M matrix (cf. [Rouvinez],

[Ruszczynski] and [Schaefer]). In practice, VAR for nonlinear portfolios is often
determined with Monte{Carlo simulation, which is very time demanding.

1.3 Maximum Loss (ML)

The basis of Maximum Loss (ML) is an analysis of worst case scenarios, which
is generally more tractable than the calculation of the P&L distribution. ML is
de�ned as follows:

The maximum loss
� that can occur during a period of t days (holding period)
� if the risk factors are restricted to some trust region At with prob-
ability �
(i.e., Pr(! j ! 2 At) = �).

At �rst sight, the statement of VAR is a much stronger than the one of ML:
VAR states that the expected level of loss is in � percent of the cases above VAR
and in (1 � �) cases below, while ML only says that the loss of � percent of
the scenarios is not bigger than some level | no statement is made about the
remaining (1��) percent of scenarios. This di�erence is caused by the fact that
for determining VAR, the distribution of the P&L has to be known, whereas ML
is directly de�ned in the space of the risk factors:

ML = min v(!)

s.t. ! 2 At; where Pr(At) = �; (1.2)
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In contrast to VAR, which depends on parameters t and �, ML has a supple-
mentary degree of freedom called \trust region" At: any closed set of risk factors
with probability � is a valid trust region. In the sequel, the trust region At will
always be the ellipsoid de�ned by

At = f! j !T��1t ! � c�g; (1.3)

where c� is the �{quantile of a chi{square distribution withM degrees of freedom
(cf. Appendix B). Intuitively, ML is the worst case among all attainable (i.e.,
lying the trust region At) scenarios (cf. �gure 1.1). Denote by ML(v) the solution
of (1.2), then it is easy to verify that the following conditions are satis�ed for
every P&L function v(!):

(i) ML(v) � inf
!2IRM v(!),

(ii) ML(�+ �v) = �+ �ML(v); 8� � 0; � � 0,

(iii) ML(1lAv) � ML(v); 8A � IRM ,

(iv) ML(v1 + v2) � ML(v1)+ ML(v2).

Risk measures which satisfy the conditions (i) | (iv) are called coherent (cf.
[Artzner et al.]). The subadditivity property (iv) assures that the risk measure
respects netting e�ects; in general, this condition is not satis�ed by VAR mea-
sures.
In the case of a linear portfolio (i.e., v(!) = �T!), ML can be calculated analyt-
ically (cf. [Studer]):

ML = �pc�
q
�T�t�: (1.4)

This expression is very similar to (1.1); they di�er only in the factors z� and
p
c�.

The fact that �z� � �pc� implies that VAR � ML; [Studer] shows that this
relation holds not only linear portfolios, but is true for every P&L function v(!)
and for every trust region which is a closed set (i.e., not only ellipsoids). But the
ML approach not only gives the loss in the worst case, it also identi�es the worst
case scenario !�:

!� = �
p
c�p

�T�t�
�t�: (1.5)

As will be shown in chapters 3 and 5, an iterative calculation of ML for di�erent
con�dence levels � gives insights into the portfolio which are more profound than
a simple VAR value.
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Trust Region

Density of Risk Factors

Figure 1.1: Modeling process of Maximum Loss
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Chapter 2

Maximum Loss for Quadratic

Risk Pro�les

As is the case for VAR, there is no analytic expression of ML for quadratic P&L
functions v(!) = 1

2
!TG! + gT!. However, it is possible to calculate e�ciently

the solution to the problem

ML = min
1

2
!TG! + gT!

s.t. !T��1t ! � c�; (2.1)

where G is a symmetricM �M matrix, g an M{dimensional vector and c� the �
quantile of a chi{square distribution withM degrees of freedom (cf. Appendix B).

2.1 The Levenberg{Marquardt Algorithm

The solution to (2.1) can be calculated numerically with the Levenberg{Marquardt
algorithm (cf. [Fletcher]). This algorithm is usually used in restricted step meth-
ods (nonlinear optimization). The algorithm cannot directly be applied to prob-
lem (2.1): it has �rst to be reformulated for a spherical trust region. There always
exists a Cholesky decomposition

�t = UTU; (2.2)

because �t is a covariance matrix and therefore positive semide�nite. Writing

! = UT !̂; (2.3)

we get an equivalent formulation to (2.1):
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ML = min
1

2
!̂T Ĝ!̂ + ĝT !̂

s.t. !̂T !̂ � c�; (2.4)

where ĝ = Ug and Ĝ = UGUT . Again, the objective function is quadratic, but
this time the constraint represents a sphere, centered at the origin. The following
theorem is the basis of the solution process:

Theorem 1

!̂ is a global solution to (2.4) if and only if there exists � 2 IR such that

(Ĝ+ �1l) is positive semide�nite; (2.5)

and the following conditions hold:

(Ĝ+ �1l)!̂ = �ĝ (2.6)

�(c� � !̂T !̂) = 0 (2.7)

� � 0: (2.8)

Moreover, if such a � exists, then it is unique, and if (Ĝ+ �1l) is positive de�nite,
then !̂ is unique.

The proof of this theorem is given in [Fletcher]. The key idea behind the
Levenberg{Marquardt algorithm is to make a one{dimensional search for �. Sup-
pose for a moment we would have an orthonormal basis of eigenvectors of Ĝ:
B = fê1; : : : ; êMg with corresponding eigenvalues �1 � : : : � �M (B exists be-
cause Ĝ is symmetric). We can express the vectors ĝ and !̂ in this new basis:
ĝ =

PM
i=1 �iêi and !̂ =

PM
i=1 �iêi, where the coe�cients �i are the unknowns.

Relation (2.6) implies that �i = � �i
�i+�

; i = 1; : : : ;M . Therefore, !̂ can be seen
as a function of � and

k!̂(�)k2 =
MX
i=1

�
�i

�i + �

�2
: (2.9)

This is a positive, decreasing function with lim�!1 k!̂(�)k2 = 0. Conditions (2.5)
and (2.8) imply that � � max(��1; 0). This situation is represented in �gure 2.1.
Depending on �, two cases have to be distinguished:

1. � = 0: Ĝ is positive semide�nite by (2.5). From equation (2.6) we conclude
that !̂ = �Ĝ�1ĝ is the worst case we are looking for.

2. � > 0. Let �1 < �2 be two candidates for �. Equation (2.6) implies that
!̂i = �(Ĝ + �i1l)

�1ĝ; i = 1; 2. From (2.9) we know that k!̂1k2 > k!̂2k2.
Thus, we can apply a bisectionning method to �nd that value of � which
satis�es (2.7), i.e., k!̂(�)k2 = c�.
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Figure 2.1: Analysis of k!̂(�)k2

Obviously, neither the eigenvectors êi of Ĝ nor its eigenvalues �i are needed to
implement such a bisectionning algorithm. In fact, it is possible to implement
the algorithm such that it solves the problem in polynomial time:

Theorem 2

The number of arithmetic operations required for calculating the global solution
to (2.4) is bounded by a polynomial in

� p: number of digits of the solution !̂ requested

� L: bit{length of entry data (Ĝ; ĝ; c�: rationals)

� M : dimension of problem.

Elements of the proof are given in [Vavasis]. It is important to note that this
is the only nonconvex global optimization problem for which a polynomial time
algorithm is known. Technical details of the implementation are described in
[Finschi].

2.2 Sensitivity Analysis

The e�ects of small perturbations of the parameters (i.e., G; g;�t; c�) in prob-
lem (2.1) can be calculated analytically. These results will become helpful in
chapter 3, when ML is calculated repetitively for slightly modi�ed problems.
Let u(!) = !T��1t !� c� be the constraint function of the optimization problem
(2.1). Thus, the original optimization problem can alternatively be written as

9



ML = min v(!)

s.t. u(!) � 0: (2.10)

The Lagrangian function of this problem is

L(!; �) = v(!) + �u(!); (2.11)

where � is a real number. From optimization theory we know that if !� is
a solution of problem (2.10), then there exists �� satisfying the Kuhn{Tucker
equations

r!L(!�; ��) = 0 (2.12)

��u(!�) = 0 (2.13)

u(!�) � 0 (2.14)

�� � 0; (2.15)

where r! denotes the gradient with respect to !. Since we know !� from the
Levenberg{Marquardt algorithm (cf. chapter 2.1), it is easy to �nd ��:

1. u(!�) 6= 0: equation (2.13) implies �� = 0.

2. u(!�) = 0. To satisfy equation (2.12) and (2.15) we have to choose

�� =
kG!� + gk
2k��1t !�k : (2.16)

But �� can be interpreted as the marginal contribution (shadow price) of the
restriction u(!) � 0. If this restriction is slightly perturbed by � > 0 to become
u(!) � �, then !�(�) and ��(�) denote the solutions of the perturbed problem.
Equation (2.13) implies that v(!�(�)) = L(!�(�); ��(�)) and therefore

@v(!�(�))

@�
=
@L(!�(�); ��(�))

@�
= ���: (2.17)

Writing the perturbed restriction as !T��1t ! � c� + �, equation (2.17) enables
us to calculate the e�ect of a small change �c� to ML:

�v(!�) = ����c�: (2.18)

Of course, small modi�cations in the objective function v(!) can be analyzed
with ordinary calculus:

�v(!�) =
1

2
!�T�G!� +�gT!�: (2.19)

10



Chapter 3

Maximum Loss Path

3.1 Expanding Trust Regions

A repetitive calculation of ML gives insights into a portfolio that go far beyond a
simple worst case identi�cation. The Levenberg{Marquardt algorithm described
in chapter 2.1 allows to determine the value of the maximal loss as well as to
identify the worst case scenario. If this calculation is repeated for several con�-
dence levels �, a list of MLs and scenarios is constructed, Table 3.1 shows the
results for a real{world portfolio.

� ML Risk Factor 1 Risk Factor 2 . . . Risk Factor 7
...

...
...

... . . .
...

93 % -2970.595 -78.33 -38.48 . . . -6.69
94 % -3047.673 -79.71 -39.12 . . . -6.80
95 % -3137.119 -81.30 -39.87 . . . -6.93
96 % -3244.300 -83.17 -40.74 . . . -7.07
...

...
...

... . . .
...

Table 3.1: Repetitive calculation of ML for real{world portfolio

The geometric interpretation of this procedure is obvious: increasing � from 0
to some upper limit means expanding the trust region from a single point to the
�nal ellipsoid (cf. �gure 3.1).
Such a sequence of scenarios de�nes a path which starts at the actual value of the
risk factors (cf. chapter 1.1) and follows the worst possible route (cf. �gure 3.2).
To obtain a path that is \smooth", it is necessary to solve the minimization prob-
lems many times for di�erent levels of �. However, the results of the sensitivity
analysis in chapter 2.2 give �rst order approximations which allow to reduce the
number of minimizations by using some interpolation scheme.
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3.2 Maximum Loss On an Ellipsoid

If the matrix G in problem (2.1) is positive de�nite (i.e., all curvatures are posi-
tive), the optimization problem has a unique stationary point which is the strict
global minimum. Consequently, the path will end at this point as soon as it is
reached. This means that as soon as our path reaches this point, it will get stuck
there. However, it could be interesting to see how the path would evolve if we
restricted the minimization to the surface of the expanding trust region. This is
equivalent to solve the problem

ML = min
1

2
!TG! + gT!

s.t. !T��1t ! = c�; (3.1)

where the inequality has become an equality. By the procedure described in

12



chapter 2.1, the ellipsoid is transformed to a sphere:

ML = min
1

2
!̂T Ĝ!̂ + ĝT !̂

s.t. !̂T !̂ = c�: (3.2)

Then the following theorem shows how this problem can be solved using the
already known Levenberg{Marquardt algorithm (cf. chapter 2.1):

Theorem 3

For every � > max(�1; 0), where �1 is the lowest eigenvalue of Ĝ, the two problems

min
1

2
!̂T (Ĝ� �1l)!̂ + ĝT !̂

s.t. !̂T !̂ = c� (3.3)

and

min
1

2
!̂T (Ĝ� �1l)!̂ + ĝT !̂

s.t. !̂T !̂ � c� (3.4)

have an identical solution !̂�.

Proof. The matrix (Ĝ � �1l) is not positive semide�nite. To satisfy equation
(2.5) of theorem 1, we must have � � � > 0. Hence, k!̂k2 = c� must hold to
ful�ll condition (2.7). Since � is unique (cf. theorem 1), it follows that the two
problems (3.3) and (3.4) have identical solutions.

The fact that !̂T !̂ = c� implies that
1
2
!̂T (Ĝ��1l)!̂+ĝT !̂ = 1

2
!̂T Ĝ!̂+ĝT !̂� 1

2
�c�;

therefore, !̂� is also solution to (3.2). For applying this theorem, a lower bound
of �1 must be known, which can be obtained by using Gershgorin discs.
Of course, the ideas developed so far can also be applied to the pro�t side of
the portfolio. Inverting the sign of the objective function of (3.2) leads to the
problem

�MP = min �1

2
!̂T Ĝ!̂ � ĝT !̂

s.t. !̂T !̂ = c�; (3.5)

and permits to �nd the path of MP.
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3.3 Expected Pro�t and Loss On an Ellipsoid

Are ML and MP su�cient to judge the quality of a portfolio? The answer is no:
a study of nothing but the extremes gives no indication about what has to be
expected in the \typical" case. Similar to ML and MP, we can also calculate the
expected pro�t and loss on the ellipsoid: as before, the ellipsoid is �rst transformed
into a sphere (cf. chapter 2.1), which changes the P&L function to v̂(!̂) =
1
2
!̂T Ĝ!̂+ ĝT !̂. Appendix C shows that the expected value (EV) on the sphere is

E(v̂(!̂) j !̂T !̂ = c�) =
c�

2

Tr(Ĝ)

M
; (3.6)

where Tr(Ĝ) =
PM

i=1 Ĝi;i. Although this quantity is easy to calculate, it gives im-
portant information about the portfolio: plotting the value of (3.6) for increasing
� leads to the EV path. Figure 3.3 shows a portfolio whose MP is twice as much
as ML | for every value of �. Nevertheless, the expected outcome is almost
equal to ML. This emphasizes the fact that a comparison of ML and MP is not
su�cient to judge a portfolio's qualities. However, the study of all three paths
together allows founded judgments.
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Figure 3.3: Portfolio characterization by ML, MP and EV paths
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Chapter 4

Dynamic Approximation

In the previous chapters it has always been assumed that a quadratic P&L func-
tion v(!) was given. Such a function can, for example, be obtained by using
Taylor series expansions v(!) = �T! + 1

2
!T�! + o(k!k2). For many �nancial in-

struments, local sensitivities (�;�) can be calculated directly from the valuation
models (cf. [Hull]). However, such local approximations are only valid for small
changes in ! | in our model for short holding periods t or small con�dence levels
�.

4.1 Quadratic Approximation

For large moves of the risk factors !, local approximations can lead to large
errors. In practice, so{called risk pro�les (cf. �gure 4.1) are used to analyse the
structure of P&L functions v(!): a set of scenarios S = f!(1); : : : ; !(n)g is de�ned
and the portfolio is fully repriced for each of them separately; the resulting P&Ls
are denoted P = f�(1); : : : ; �(n)g.

ω
ω(5) ω(6) ω(7)ω(4)ω(3)ω(2)ω(1)

(5)ξ

(6)ξ

(7)ξ
(1)ξ

(4)ξ
(3)ξ

(2)ξ

P&L

Figure 4.1: Example of one{dimensional risk pro�le

From the sets P and S, a quadratic approximation v(!) = 1
2
!TG!+ gT!+ c can

be constructed using the method of least squares:
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min
nX
i=1

�
1

2
!(i)TG!(i) + gT!(i) + c� �(i)

�2

s.t. G 2 IRM�M ; symmetric

g 2 IRM

c 2 R: (4.1)

The unknowns G; g and c can be determined by solving a set of linear equations;
more details are given in Appendix D. Note that the newly introduced constant
c can simply be added to the results of the previous chapters.

4.2 Dynamic Weighting

The least squares method of chapter 4.1 leads to quadratic approximations with
best �t to the entire scenario set S. However, if we seek ML on the surface of
a speci�c ellipsoid (i.e., for a �xed level �), we can utilize better approximations
by weighting the scenarios adequately: the scenarios !(i) lying close to the �{
ellipsoid (i.e., !(i)T��1t !(i) � c�) get a higher weight than those lying far away.
Hence, for scenario !(i) the weight #i(�) is set to:

#i(�) =
1

1 + � j !(i)T��1t !(i) � c� j
 ; (4.2)

where �; 
 > 0 are parameters which control the smoothness with respect to �.
If �(�) denotes the diagonal weighting matrix (i.e., �i;i(�) = #i(�); �i;j(�) = 0
if i 6= j), then the normal equation (D.2) becomes

ST�(�)Sx(�) = ST�(�)�; (4.3)

where the solution x(�) de�nes the parameters G(�); g(�) and c(�). Thus, for
every value of �, a new P&L function v(!; �) = 1

2
!TG(�)! + g(�)T! + c(�) is

de�ned; it is quadratic for � �xed. Hence, the paths of ML, MP and EV can
be calculated with the methods described in chapters 3.2 and 3.3. This way, it
is possible to analyse portfolios, which are not necessarily quadratic, by using
a family of quadratic approximations (cf. �gure 4.2). Note that this method
produces exact results for quadratic functions.
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Chapter 5

Maximum Loss Distribution

Using the information contained in the paths, it is possible to determine the
distribution of ML and MP. This enables us to answer questions like \With which
probability will ML exceed the level of �2400?" or \What is the probability that
MP is less than 1300?".

5.1 Shell Model

In this chapter we show how a lower bound of the ML distribution can be obtained
using a shell model: the key idea is to dissect the entire space IRM into a �nite,
disjoint set of shells fSig. Assume that for the construction of the ML path, the
worst cases for 0% = �(0) < �(1) < : : : < �(N) = 100% have been calculated.
Then, the most natural choice is to take Si = f! j c�(i�1) � !T��1t ! < c�(i)g.
Thus, in the transformed problem (2.4), IRM can be interpreted as a union of
thin spherical mantles (cf. �gure 5.1).

Figure 5.1: Shell model of IR3

Using the natural discretisation implies that shell Si covers a probability pi =
�(i)��(i�1) of the space. Moreover, to every shell Si, the valuemi = minfML�(i�1) ,
ML�(i)g is assigned; if the discretisation is �ne enough, mi approximates the worst

18



case in shell Si. Hence, the pairs (mi; pi) de�ne a discrete distribution function
of ML.
As a result, it is possible to construct distribution functions of ML and MP for
every portfolio. Consequently, the \pro�t and loss potential" of a portfolio can
be quanti�ed: the percentage in which ML dominates MP (i.e., �ML > MP) is
easily found by comparing the two monotonously increasing sequences.

5.2 Boundaries for the Pro�t and Loss Distrib-

ution

The distributions of ML and MP are lower and upper bounds of the distribution
of P&L: in the construction of chapter 5.1, all possible P&L values in shell Si were
replaced by the maximal loss mi in that shell. Thus, Pr(v(!) � y j ! 2 Si) �
Pr(mi � y) for every shell Si and, consequently, Pr(v(!) � y) � Pr(ML � y).
This means that at every level y, the distribution function of ML lies above the
distribution function of P&L. Figure 5.2 shows the results for the real{world
portfolio; the distribution of P&L was determined with Monte{Carlo simulation.
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Figure 5.2: ML/MP distributions and true distribution of P&L

In other words, the ML distribution is a lower bound of the P&L distribution; in
the same way, the P&L distribution is bounded from above by the MP distribu-
tion. Consequently, ML and MP distributions lead to lower and upper bounds of
the risk measure \Value{At{Risk" (cf. chapter 1.2), since VAR is by de�nition a
quantile of the P&L distribution. Appendix E presents a di�erent approach which
is based on quadratic underestimators and generates bounds that are generally
tighter.
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Chapter 6

Conclusion

The key idea of Maximum Loss is to determine the worst possible outcome.
Mathematically, this means to search for the global minimum of the pro�t and
loss function over a so{called trust region (restricted area of the scenario space).
For quadratic P&L functions, ML can be calculated e�ciently (i.e., in polynomial
time) by use of the Levenberg{Marquardt algorithm.
Repetitive calculation of ML for a set of growing trust regions leads to the Max-
imum Loss Path. This concept can successfully be applied to non{quadratic
portfolios: the key idea is to restrict the analysis to the surface of the trust re-
gion and to deal with a new quadratic approximation of the P&L function for
each ellipsoid. This way, the worst route can be tracked for almost any kind of
portfolio. Similarly, the Maximum Pro�t Path as well as the path of expected
P&L can be constructed. The comparison of the three paths permits to judge
the qualities of a portfolio.
The Maximum Loss Distribution can be determined by a shell model. Contrasting
the distributions of ML and MP allows to determine to what extent the portfolio's
loss potential exceeds the pro�t potential. Also, ML and MP distributions are
lower and upper bounds of the P&L distribution and, therefore, lead to lower
and upper bounds of VAR.
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Appendix A

Stochastic Models of Market

Rate Innovations

The modeling of market rates e�ects directly the risk measurement model: Mar-
ket rates r (e.g. commodity prices, equity indices, FX rates) are usually supposed
to follow geometric Brownian motion (cf. [Hull]):

dr

r
= �dt+ �dz; (A.1)

where � is the drift factor and � the volatility, t is time and dz is a Wiener process
(i.e., dz � N (0; dt) ). The application of Itô's lemma to the function log r leads
to

log

 
r + dr

r

!
=

 
�� �2

2

!
dt+ �dz: (A.2)

If the constant drift rate (�� �2

2
)dt is eliminated, it follows that

log

 
r + dr

r

!
� N (0; �2dt); (A.3)

which means that the driftless returns are lognormally distributed. A �rst order
Taylor approximation results in

log

 
r + dr

r

!
= log(r + dr)� log(r)

�
�
log(r) + dr

1

r

�
� log(r)

=
dr

r
; (A.4)

which implies that the driftless relative returns are approximately normally dis-
tributed:
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dr

r
� N (0; �2dt): (A.5)

If the value V of a �nancial instrument depends linearly on r (i.e., V = Pr, where
P is the position of the instrument), then

dV = Pdr = V
dr

r
: (A.6)

Hence, the change in value dV is normally distributed with mean 0 and standard
deviation V �

p
dt.

For interest rates, however, the situation is somewhat di�erent: The present value
~V of a zero coupon bond with maturity n is ~V = ~P (1 + rn)

�n, where ~P is the
face value of the bond and rn is the zero coupon rate for a n year investment. It
follows that

d ~V = � n

1 + rn
~P (1 + rn)

�ndrn

= �D ~V drn (A.7)

= �D ~V rn
drn

rn
: (A.8)

The term D = n
1+rn

is called \modi�ed duration" (cf. [Fabozzi]). If the interest
rate rn is assumed to follow geometric Brownian motion, equation (A.8) implies
that d ~V becomes normally distributed:

d ~V � N (0; D2 ~V 2r2n�
2dt): (A.9)

However, if rn is assumed to follow arithmetic Brownian motion (i.e., drn =
�dt+ �dz), then equation (A.7) implies that

d ~V � N (0; D2 ~V 2�2dt): (A.10)

Note that in the case of geometric Brownian motion (A.9), the variance is r2n
times the variance of (A.10).
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Appendix B

Modeling Trust Regions

Trust regions are primarily de�ned with the density ft(!) of the risk factors. For
centered, multinormally distributed risk factors !1; : : : ; !M , the density function
is

f(!) =
1

(2�)M=2
p
det �t

exp
�
�1

2
!T��1t !

�
; (B.1)

where �t is the covariance matrix. is to �nd a trust region At which covers a
probability of � and includes the scenario ! = 0. One possible choice is to search
a constant c such that Pr f! j ft(!) � cg = �. This makes sense since ft(!)
attains its maximum at ! = 0 and leads to the trust region of minimal volume.
By eliminating the constants, the problem is reduced to the following: Find c�
such that

Pr(! j !T��1t ! � c�) = �: (B.2)

A Cholesky decomposition �t = UTU leads to !T��1t ! = !TU�1U�T! =
(U�T!)T (U�T!). But

Var(U�T!) = E
h
(U�T!)(U�T!)T

i
= U�TVar(!)U�1

= U�TUTUU�1

= 1l: (B.3)

Hence,

(U�T!) � N (0; 1l) (B.4)

and
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!T��1t ! =
MX
i=1

X2
i ; (B.5)

whereXi; i = 1; : : : ;M; are independent, standard normal variates. Thus,
PM

i=1X
2
i

is chi{squared distributed with M degrees of freedom. Consequently, the trust
region At is de�ned by:

At = f! j !T��1t ! � c�g; (B.6)

where c� is the � quantile of a �2M distribution. This equation represents an
ellipsoid centered at the origin.
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Appendix C

Conditional Expectation of Pro�t

and Loss On an Ellipsoid

Transforming the ellipsoid to a sphere (cf. chapter 2.1) leads to the P&L function
v̂(!̂) = 1

2
!̂T Ĝ!̂ + gT !̂. The quantity of interest is the conditional expectation

E(v̂(!̂) j !̂T !̂ = c�), where !̂ � N (0; 1l) by equations (2.3) and (B.4). Therefore,
the density of !̂ is

f(!̂) = (2�)�M=2 exp(�1

2

MX
i=1

!̂2
i ): (C.1)

For a sphere with radius
p
c� we have

PM
i=1 !̂

2
i = c�; hence, f(!̂ j !̂T !̂ = c�) is

constant and does not depend on !̂. Thus, for the ith component of !̂ one gets:

E(!̂i j !̂T !̂ = c�) =
1

2
E(!̂i j !̂T !̂ = c�; !̂i � 0)

+
1

2
E(!̂i j !̂T !̂ = c�; !̂i < 0)

=
1

2
E(!̂i j !̂T !̂ = c�; !̂i � 0)

+
1

2
E(�!̂i j !̂T !̂ = c�; !̂i > 0)

= 0: (C.2)

Similarly, the expectation of the mixed terms !̂i!̂j; i 6= j; is

E(!̂i!̂j j !̂T !̂ = c�) =
1

2
E(!̂i!̂j j !̂T !̂ = c�; !̂i � 0)

+
1

2
E(!̂i!̂j j !̂T !̂ = c�; !̂i < 0)
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=
1

2
E(!̂i!̂j j !̂T !̂ = c�; !̂i � 0)

+
1

2
E(�!̂i!̂j j !̂T !̂ = c�; !̂i > 0)

= 0: (C.3)

For the quadratic terms, the reasoning is somewhat di�erent. Using the fact that
!̂ lies on a sphere (i.e.,

PM
j=1 !̂

2
j = c�) leads to

E(!̂2
i j !̂T !̂ = c�) = E(c� �

X
j 6=i

!̂2
j j !̂T !̂ = c�)

= E(c� j !̂T !̂ = c�)�
X
j 6=i

E(!̂2
j j !̂T !̂ = c�)

= c� � (M � 1)E(!̂2
i j !̂T !̂ = c�); (C.4)

hence,

E(!̂2
i j !̂T !̂ = c�) =

c�

M
: (C.5)

Using the results of (C.2), (C.3) and (C.5) simultaneously, the conditional expec-
tation becomes

E(v̂(!̂) j !̂T !̂ = c�) = E(
1

2

MX
i;j=1

(Ĝ)i;j!̂i!̂j +
MX
i=1

ĝi!̂i j !̂T !̂ = c�)

= E(
1

2

MX
i=1

(Ĝ)i;i!̂
2
i j !̂T !̂ = c�)

=
1

2

MX
i=1

(Ĝ)i;i
c�

M

=
c�

2

Tr(Ĝ)

M
: (C.6)

In summary, the expected P&L on a sphere only depends on the trace of Ĝ, the

radius of the sphere
p
c� and the dimension M of the problem. Since Tr(Ĝ)

M
=P

M

i=1
�i

M
= �� (average curvature), we can give an intuitive interpretation of this

result: the expectation on a sphere with radius
p
c� is

c�
2
times the mean curvature

of the quadratic function.
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Appendix D

Least Squares for Quadratic

Approximation

Given a set of scenarios S = f!(1); : : : ; !(n)g and their respective P&L values
P = f�(1); : : : ; �(n)g, a quadratic function v(!) = 1

2
!TG! + gT! + c has to be

found, which best �ts the observations. The least squares formulation of this
problem is

min
G;g;c

nX
i=1

�
1

2
!(i)TG!(i) + gT!(i) + c� �(i)

�2
; (D.1)

where G 2 IRM�M , symmetric; g 2 IRM and c 2 IR are the unknowns. The
solution is obtained by solving the normal equation

STSx = ST �; (D.2)

where S is the scenario matrix

S =

0
BBBB@

1
2
!2
1 !1!2 : : : !1!M

1
2
!2
2 !2!3 : : : 1

2
!2
M !1 : : : !M 1

!(1) : : : : : : 1
!(2) : : : : : : 1
...

. . .
...

!(n) : : : : : : 1

1
CCCCA

(D.3)

which is a n � (M(M+3)
2

+ 1) matrix; row i contains the various products of the
components of scenario !(i). The vector

� =
�
�(1); : : : ; �(n)

�
; (D.4)

holds the P&Ls of each scenario. Finally, x is the vector of the unknowns:

x = (G1;1;G1;2; : : : ;G1;M ;G2;2;G2;3; : : :GM;M ; g1; : : : gM ; c) ; (D.5)
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it has (M(M+3)
2

+ 1) elements and contains all elements of G; g and c. If one has
knowledge that the portfolio is not sensitive to crosses of the risk factors (i.e.,
Gi;j = 0 if i 6= j), the vector x has only (2M+1) unknowns and the linear system
is considerably smaller.
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Appendix E

Quadratic Estimators for

Boundaries of Pro�t and Loss

Distribution

[Rouvinez] describes a method for calculating numerically the cumulative distrib-
ution of a quadratic P&L function. This technique can be used to determine lower
bounds of the P&L distribution: given a set of scenarios S = f!(1); : : : ; !(n)g with
P&Ls P = f�(1); : : : ; �(n)g, the weights  i = exp(�1

2
!(i)T��1t !(i)), i = 1; : : : ; n,

are de�ned, which are proportional to the density of the risk factors. Then, a
quadratic underestimator v

�
(!) = 1

2
!TG

�
!+g

�
T!+c

�
is constructed, which approx-

imates the given scenarios best:

min
nX
i=1

 i j v
�
(!(i))� �(i) j

s:t: v
�
(!(i)) � �(i); i = 1; : : : ; n: (E.1)

Setting  = ( 1; : : : ;  n) and using the notation of Appendix D, the problem
(E.1) can be formulated as a linear program:

min dTx

s:t: Ax � �; (E.2)

where d = AT . The solution x de�nes the unknowns G
�
; g
�
and c

�
and, conse-

quently, the quadratic underestimator v
�
(!). Hence, the distribution of v

�
(!) is a

lower bound of the true distribution of P&L. Similarly, an upper bound can be
calculated by replacing the constraint with Ax � �.
In general, these bounds are tighter than the ML/MP distributions (cf. chap-
ter 5.2). This is due to the fact that ML of a shell counts for all M dimensions,
whereas quadratic underestimators consider each dimension in the same way.
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