
Price Comparison Results and Super-replication: An
Application to Passport Options †

Vicky Henderson ‡

RiskLab, Department of Mathematics, ETH Zentrum, CH-8092, Zurich, Switzer-
land
vh@math.ethz.ch

28th May, 1999, minor revisions 2nd May, 2000

Abstract

In this paper, we provide a new proof of the result that option prices are in-
creasing in volatility when the underlying is a diffusion process. This has been
shown to hold for convex payoff, path-independent options by El Karoui et al
[7], Hobson [12] amongst others. The advantage of the new proof is that it
can be extended to establish monotonicity results for path-dependent payoffs
where the payoff depends on the maximum (or minimum) of the asset price pro-
cess. The techniques used to prove each of these results are mean comparison
theorems of Hajek [9] and coupling of stochastic processes.

Using these results, and the connection between passport and lookback op-
tions, we prove that the price of a passport option is increasing in volatility
for general diffusion models for the asset price. It is shown that the seller of a
passport option can super-replicate if the volatility is overestimated, regardless
of the strategy followed by the holder.
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1 Introduction

In the Black Scholes model, it is clear that the price of a call option is increasing
in the volatility parameter. However, once we step away from this simple model,
this property is no longer immediate. Indeed, if we consider option payoffs
other than calls, it is not obvious that this monotonicity property holds. Thus,
a natural question which has been answered by El Karoui [7] , Hobson [12] and
Bergman et al [3] is whether option price monotonicity in volatility holds for
more general models than Black-Scholes. Their result, says that for diffusion
models and convex payoff the (non path-dependent) option price is increasing
in volatility. We prove this result in a simpler, more general way in this paper,
extending the result to allow for a diffusion price process where the diffusion
coefficient varies in time and space. Our motivation for this is to use techniques
which enable us to extend the result to exotic options.

We extend the monotonicity result to a payoff involving the maximum (or
minimum) of the asset price process over a time interval. The approach used is
to adapt a comparison theorem of Hajek [9] to obtain the result directly. This
represents an extension of the new proof for the simple non path-dependent op-
tion price monotonicity result. Alternatively, we could use coupling of stochas-
tic processes to extend a result by Hobson [12]. For a description of coupling
techniques see Lindvall [14].

This new result involving maximums will be applied to a new type of option
called a passport option. The literature on passport options includes Hyer et
al [13], Henderson and Hobson [11], Andersen et al [1], Henderson [10], Shreve
and Večeř [17] and Delbaen and Yor [5]. A passport option is a call option on
a trading account where the holder(buyer) of the option undertakes a trading
strategy which is subject to a constraint. At expiry, the holder receives from
the option seller either the positive gains from trading or nothing if a loss was
made.

By exploiting a connection between passport and lookback options we prove,
using our result, that the price of a passport option is increasing in volatility,
where the asset price follows a general diffusion process with a realistic assump-
tion on the diffusion coefficient. This is of interest, since the optimal strategy
for the holder is in fact the same for any diffusion with non-decreasing diffusion
coefficient.

We also consider the question of hedging with a model which differs from
the true dynamics of the price process. What will happen if the seller of a
passport option believes and uses a model in which the volatility is consistently
higher or lower than the ‘true’ volatility? We examine the hedging strategy
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which is calculated under the sellers’ assumed model using market prices which
are from the ‘true’ model. Since the seller can never know the ‘true’ model,
this is an important practical consideration. For a diffusion price process of
the type mentioned, we prove that if volatility is overestimated by the seller,
they will always have at least enough to cover the option payout and may have
more than the required amount. This is called super-replication, see El Karoui
and Quenez [8]. We show this occurs regardless of the strategy followed by the
holder.

A number of authors mentioned earlier have considered this question in the
context of non path-dependent options (see El Karoui et al [7] and Hobson [12]).
Recent work of Dudenhausen et al [6] examines Gaussian interest rate models
and concludes that overestimating volatility can cause the seller to superrepli-
cate if the hedges are implied by Black-Scholes-type pricing formulas (said to
include Gaussian term structure models and lognormal interest rate “market”
models) and if certain hedging instruments are available.

The paper is structured as follows. In §2 we provide a simple proof of price
monotonicity for non path-dependent options using Hajek’s [9] theorem. The
important extension to path-dependent payoffs is made in §3 with Theorem
3.1. The conclusion of this theorem is applied to passport options in §4.1, with
the main result given in Theorem 4.1. In §4.2, the fact that the seller can
superreplicate if volatility is overestimated, whatever the strategy followed by
the holder is proved. The final section concludes.

2 A Simple Proof of Option Price Monotonicity

A way of thinking about the option price monotonicity problem is to consider
an agent misspecifying volatility and the effect this has on option prices. The
question we answer is: when does the option seller overcharge for the option?
The idea is to compare two models, one being that used by the seller, the
other is a true reflection of the market. The comparison is done for stochastic
volatility models, which have been used by Bensoussan et al [2], Cox and Ross
[4] and Rubinstein [16] and shown to be more realistic than the Black-Scholes
model. As mentioned in the introduction, the problem is simple for the Black
Scholes model as it is clear that higher volatility gives a larger option price
and the seller using the higher volatility overcharges relative to the ’true’ lower
volatility.

Previously a number of authors have dealt with this problem using different
techniques. Each has shown that (when the price is a diffusion) if the misspec-
ified volatility dominates the true volatility then the option prices are ordered
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the same way, provided the payoff is convex. Bergman et al [3] analyse the pric-
ing partial differential equation whilst El Karoui et al [7] use stochastic flow
theory. Hobson [12] constructs a coupling proof based on time changing the
continuous local martingale into Brownian motion.

The approach taken here is to apply a comparison theorem of Hajek [9]
to achieve the result. This provides a short alternative proof, relying on an
existing theorem. We do not require the true model to be a diffusion, although
we do need this for the pricing model. Hajek’s result was previously used in
finance by Shreve and Večeř [17].

Consider a continuous time model for the economy with a finite horizon
T . There is a risky asset with price St and for simplicity we assume that
interest rates are zero, until stated otherwise. Markets are frictionless with no
transactions costs or taxes and assets are infinitely divisible.

We assume that the asset price process is a continuous martingale and that
a unique martingale measure exists. This is the pricing measure under which
the asset price is a martingale. As a corollary the price of any option can be
written as the expectation of the payoff under P.

The ‘true’ model is as follows: under P, the measure used for pricing, the
price solves

dS̃t = η̃tdWt(1)

where η̃t is non-negative and adapted.
Now suppose the option seller believes (and uses) another model where Ŝ

solves:

dŜt = η̂(Ŝt)dWt(2)

with S̃0 = Ŝ0. We assume η̂ has sufficient continuity properties to ensure
the solution to (2) is unique in law (for example, a Lipschitz condition on
η̂, see Rogers and Williams [15], Remark V.16.4). This assumption will be
used throughout the paper to ensure uniqueness of weak solutions to stochastic
differential equations.

We need the following theorem (see Hajek [9, Theorem 3]).

Theorem 2.1 (Hajek)
Let x be a continuous martingale with representation

xt = x0 +
∫ t

0
σsdWs(3)

such that for some Lipschitz continuous function ρ on R
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|σs| ≤ ρ(xs)(4)

and let y be the unique solution to the SDE

yt = x0 +
∫ t

0
ρ(ys)dWs.(5)

Then for any convex function Φ and any t ≥ 0

EΦ(xt) ≤ EΦ(yt).(6)

�

Theorem 2.1 will be used to prove the following monotonicity result.

Theorem 2.2 Given a convex payoff Φ and η̃t ≤ η̂(S̃t), the option price is
higher under the misspecified model than the true model.

Proof:
Given the martingale S̃ follows (1) and Ŝ solves (2) with |η̃t| = η̃t ≤ η̂(S̃t),

applying Theorem 2.1 gives

EΦ(S̃t) ≤ EΦ(Ŝt).

�

Remark 2.3 In Hobson [12] the diffusion coefficient in (2) may also depend
on the time parameter. However, this is at the cost of requiring both models
to be diffusions.

3 Price monotonicity for path-dependent options

In contrast to [7] , [12] and [3] we can extend the result in Theorem 2.2 to
path-dependent options. We consider two models for the asset price with Ŝ0 =
S̃0 = S0 > 0 which are the same as those given in (1) and (2)

dS̃t = η̃tdWt(7)

dŜt = η̂(Ŝt)dWt(8)

with η̂ Lipschitz continuous and η̃t non-negative and adapted. Denote S∗
T =

sup0≤t≤T St.
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Theorem 3.1 Given η̂(x) ≥ η̃t ∀ t, x then

Eh(Ŝ∗
T ) ≥ Eh(S̃∗

T )

for any increasing function h.

Proof:
The method will be to adapt the proof of Theorem 2.1 by Hajek [9] to

deal with maximums of processes. We refer the reader to Hajek [9] for the
technicalities of the proof.

In Hajek’s proof of Theorem 2.1, a process zt is introduced as a time change
of xt (solving (3)):

zδt = xt

where δt =
∫ t
0

σ2
u

ρ(xu)2
du and δt ≤ t. Analogously, define τ(s) = inf{t : δt > s}

and

zs = xτ(s).

Then

z2s −
∫ s

0
ρ(zt)2dt = z2s −

∫ τ(s)

0
ρ(zδt)

2dδt

= x2
τ(s) −

∫ τ(s)

0
σ2

t dt

and the optional sampling theorem implies that zt and z2t −
∫ t
0 ρ(zs)

2ds are
continuous martingales. So z is a weak solution to (5). By uniqueness (see
comments in §2), zt = yt in law.

At this point, a convex function Φ and the optional sampling theorem are
used on the submartingale Φ(zs) to give EΦ(zt) ≥ EΦ(zδt) and thus give the
result (6).

To prove the result, we look at the maximum process and note that

sup
t≤T

xt ≡ sup
r≤δT

zr ≤ sup
r≤T

zr ≡ sup
t≤T

yt,(9)

since δT ≤ T .
Now set |σt| = σt = η̃t and ρ(xt) = η̂(Ŝt) giving

sup
t≤T

S̃t ≤ sup
t≤T

Ŝt.(10)

Then
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h(sup
t≤T

S̃t) ≤ h(sup
t≤T

Ŝt)

for h increasing and taking expectations gives the result.
�

Remark 3.2 Defining (S∗)T = inf0≤t≤T St we can modify the proof to obtain
the corresponding result for infimums:

Eh(Ŝ∗)T ≤ Eh(S̃∗)T .

Remark 3.3 We could have proved Theorem 3.1 using coupling by extending
the result in Hobson [12]. This is done by time changing the continuous martin-
gale to Brownian motion. By using the same Brownian motion for both models,
a comparison of the time changes may be made. In this case, both models need
to be diffusions with Lipschitz continuous diffusion coefficients. However, both
coefficients may be time dependent: η̂(Ŝt, t) and η̃(S̃t, t).

4 An Application to Passport Options

A passport option is a call option on the balance of a trading account. The
buyer of the option pays an upfront premium and trades according to a strategy
of their choice, subject to the constraint that the number of units of risky asset
held (long or short) is bounded by a fixed constant. At the expiry date T ,
either the gains from this strategy are paid to the holder, or if the account lost
money, the loss is borne by the seller giving the buyer a zero net position. The
passport option was first introduced by Bankers Trust and the initial paper by
Hyer et al [13] appeared in 1997.

This type of structure could be used by active fund managers to offer prod-
ucts with principal protection. Whilst limiting the fund participants downside
risk, the fund manager is able to engage in potentially high risk strategies with
the knowledge that they will be protected in the event of loss. However, as
with other risk management tools, protection comes at a cost in the form of an
initial premium.

A key problem in the pricing of passport options is determining the holders’
optimal strategy. For the model in §4.1, Andersen et al [1] and Hyer et al [13]
show that the holder should invest up to the allowed limit, buying when the
value of the trading account is negative and selling otherwise, when the price
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Figure 1: Price of a Passport Option using the Black-Scholes model
with S0 = 100, G0 = 0 and T = 1.

follows exponential Brownian motion. This is shown to hold for more general
diffusion models (with non-decreasing diffusion coefficient) by Henderson and
Hobson [11]. Further results on passport options can be found in Henderson
[10].

It is clear that in a Black-Scholes world of exponential Brownian motion,
the price of a passport option is increasing in the volatility. In Figure 1, the
price of a passport option is plotted against volatility to show this result. This
can also be seen directly from the pricing formula in Example 1, Henderson and
Hobson [11] or Hyer et al [13]. However, if we only assume that the asset price
follows a diffusion (with non-decreasing diffusion coefficient) does this property
still hold? We show that the answer is yes.

We show in Theorem 4.2 that if the seller of a passport option overestimates
volatility then they can superreplicate. This is independent of the strategy
followed by the holder of the option. Coupling is applied to achieve the result
in Lemma 4.3.

4.1 Passport Option Price Monotonicity

Assuming the (discounted) asset price St follows

dSt = η(St, t)dWt(11)

whilst the undiscounted price is denoted by Pt, where St = e−rtPt. For no-
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tational simplicity, the interest rate r is constant and we further assume η is
Lipschitz continuous.

Denote the holders’ strategy by qt, representing the number of units of asset
held at time t. Then the gains from trade process ψt is given by

dψt = rψtdt + qtσP (Pt, t)PtdWt

where η(St, t) ≡ σ(St, t)St ≡ σP (ertSt, t)St.
The discounted gains from trade, Gt = e−rtψt follows

dGt = qtdSt.

A passport option with expiry T is a call option (with zero strike) on the
trading account ψt and is defined by the payoff

ψ+
T ≡ max(ψT , 0).

Assuming the holder follows the optimal strategy, the time 0 price of a
passport option is given by

sup
|q|≤1

EG+
T (q).(12)

In Henderson and Hobson [11] this price is shown to reduce to:

1
2
E(S∗

T − S0 − |G0(q)|)+ +G0(q)+(13)

when η(St, t) is non-decreasing in S.

Theorem 4.1 Given η̂(x, t) ≥ η̃(x, t) ∀ x, t with η̂, η̃ non-decreasing in x, the
price of a passport option is higher under η̂ than the diffusion coefficient η̃.

Proof:
Using Theorem 3.1 or particularly Remark 3.3, we know for h increasing

Eh(Ŝ∗
T ) ≥ Eh(S̃∗

T ).

Take h(x) = 1
2
(x− S0 − |G0(q)|)+ +G0(q)+ and the result is true.

�

The transformation of the price of the passport option from (12) to a quan-
tity involving the maximum of the price process has allowed us to use Theorem
3.1 in a straightforward fashion. The result is interesting as it is important to
see the effect of a different volatility on the option price, and show that the
monotonicity property remains true even for general diffusion models.
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4.2 Hedging and Super-replication of Passport Options

In the situation where the seller uses the ’true’ model (there is no model mis-
specification), the market is complete. It is simple to show the seller replicates
the passport option exactly if the holder follows the optimal strategy. If this
strategy is not followed, the seller will super-replicate.

We will now consider the situation of the option seller using an incorrect
model. This question has been considered by El Karoui et al [7] and Hobson
[12] in the context of non-path-dependent options with convex payoffs. They
show the seller can super-replicate if volatility is overestimated and the asset
price follows a diffusion under the model used. It is an important question as
it means the sellers’ hedging strategy is robust to model misspecification of the
dynamics of the underlying asset.

Assume the seller believes and uses for pricing the model

dŜt = η̂(Ŝt, t)dWt(14)

and the price of a passport option is given by

V P (t, Ŝt, Ĝt(q)) = sup
|q|≤1

EtĜ
+
T (q).(15)

We assume r = 0 for simplicity in this section. Let q∗ be the holder’s optimal
strategy which attains the supremum above. The price V P is a martingale when
q = q∗ and a supermartingale otherwise, as shown in Henderson and Hobson
[11].

Suppose that the true volatility is η̃(S̃t, t) and that

η̂(x, t) ≥ η̃(x, t) ∀x, t.(16)

Theorem 4.2 If the seller of the passport option overestimates volatility then
they can super-replicate the option, regardless of the holders’ strategy.

Proof:
Set S0 = Ŝ0 = S̃0 and G0 = Ĝ0 = G̃0. The buyer follows some strategy

q, not necessarily q∗. Since we are in a complete market, we write the option
payoff as the sum of the initial price plus gains from trade, under the writers’
model:

Ĝ+
T = V P (0, S0, G0) +

∫ T

0
θudŜu(17)

where θ is the sellers’ hedge.
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Also since V P (t, Ŝt, Ĝt(q)) is a super-martingale we have

V̇ P (t, s, g) + 1
2
V P

SS(t, s, g)η̂
2(s, t) + 1

2
V P

GG(t, s, g)η̂
2(s, t)(q)2

+ V P
SG(t, s, g)η̂

2(s, t)q ≤ 0(18)

with equality if q = q∗.
Using Itô’s lemma also gives us the sellers’ hedge as

θt = (V P
S (t, s, g) + qV P

G (t, s, g)).(19)

Now if the seller begins with an amount V P (0, S0, G0) and follows this hedge
in the real world, he will have

V P (0, S0, G0) +
∫ T

0
θudS̃u

by time T . This is equivalent to

V P (0, S0, G0) +
∫ T

0
(V P

S (u, S̃u, G̃u) + qV P
G (u, S̃u, G̃u))dS̃u.(20)

We may also represent the payoff in the real world by:

G̃+
T = V P (0, S0, G0) +

∫ T

0
dV P (u, S̃u, G̃u)(21)

as G̃+
T = V P (0, ST , G̃

+
T ).

Using (20) and (21),

V P (0, S0, G0) +
∫ T

0
θudS̃u = G̃+

T −
∫ T

0
dV P (u, S̃u, G̃u)

+
∫ T

0
(V P

S (u, S̃u, G̃u) + qV P
G (u, S̃u, G̃u))dS̃u.(22)

Then using Itô’s lemma on V P (u, S̃u, G̃u) gives,

dV P (u, S̃u, G̃u) = (V P
S (u, S̃u, G̃u) + qV P

G (u, S̃u, G̃u))dS̃u

+ (V̇ P (t, S̃t, G̃t) + 1
2
V P

SS(t, S̃t, G̃t)η̃2(S̃, t)

+ 1
2
V P

GG(t, S̃t, G̃t)η̃2(S̃, t)(q)2 + V P
SG(t, S̃t, G̃t)η̃2(S̃, t)q)du

≤ (V P
S (u, S̃u, G̃u) + qV P

G (u, S̃u, G̃u))dS̃u(23)

if and only if
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V̇ P (t, s, g) + 1
2
V P

SS(t, s, g)η̃
2(s, t)

+ 1
2
V P

GG(t, s, g)η̃
2(s, t)(q)2 + V P

SG(t, s, g)η̃
2(s, t)q) ≤ 0.

Using (18) with q = q∗ the above is equivalent to

1
2
V P

SS(t, s, g)η̂
2(s, t) + 1

2
V P

GG(t, s, g)η̂
2(s, t)(q∗)2 + V P

SG(t, s, g)η̂
2(s, t)q∗

− ( 1
2
V P

SS(t, s, g)η̃
2(s, t) + 1

2
V P

GG(t, s, g)η̃
2(s, t)(q)2

+ V P
SG(t, s, g)η̃

2(s, t)q) ≥ 0

There are now two cases to consider. If q = q∗, using (16) we need to show

( 1
2
V P

SS(t, s, g) + 1
2
V P

GG(t, s, g)(q
∗)2 + V P

SG(t, s, g)q
∗) ≥ 0.(24)

We show this in Lemma 4.3 below. Then for general q, we need

1
2
V P

SS(t, s, g) + 1
2
V P

GG(t, s, g)q
∗2 + V P

SG(t, s, g)q
∗

≥ 1
2
V P

SS(t, s, g) + 1
2
V P

GG(t, s, g)q
2 + V P

SG(t, s, g)q

which is immediate from (18).
This proves the result since now

V P (0, S0, G0) +
∫ T

0
θudS̃u ≥ G̃+

T

using (22) and (23).
It remains to prove the lemma.

Lemma 4.3 ( 1
2
V P

SS(t, s, g) + 1
2
V P

GG(t, s, g)(q
∗)2 + V P

SG(t, s, g)q
∗) ≥ 0.

Proof:
Using (18) with q = q∗ it is equivalent to show V̇ P (t, s, g) ≤ 0. Rewrite the

price as follows using (13), where St = s and Gt = g:

V P (t, s, g) = 1
2
Et( sup

t<r≤T
Sr − (s+ |g|))+ + g+

= 1
2
Et[ sup

t<r≤T
Sr ∨ (s+ |g|)] + g+ − 1

2
(s+ |g|)

= 1
2
f(s+ |g|, s, T − t) + 1

2
(g − s)(25)
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where f is given by f(S∗
t , St, T−t) = Et[S∗

T |S∗
t , St] = Et[S∗

t ∨supt<r≤T Sr|S∗
t , St].

We want

V̇ P (t, s, g) ≡ 1
2

∂

∂t
f(s+ |g|, s, T − t) ≤ 0.(26)

Rewriting f as in Henderson and Hobson [11] as

f(S∗
t , St, T − t) = S∗

t + Et( sup
t<r≤T

Sr − S∗
t )

+

we will show

∂

∂t
f(S∗

t , St, T − t) = ∂

∂t

[
S∗

t + Et( sup
t<r≤T

Sr − S∗
t )

+

]
≤ 0.(27)

which is equivalent to showing (26).
Intuition tells us that this result is surely true. If there is less time until

maturity, the expected maximum of S should be lower. This is clearly true if the
diffusion coefficient is time-independent. However in our time-inhomogeneous
setting, it turns out that it requires a subtle proof, involving starting S at two
different times, but with the same value.

Consider two processes S1 and S2 which satisfy the same SDE and have the
same initial conditions but start at different times. We write

dS1
u = η(S1

u, u)dBu(28)

and

dS2
u = η(S2

u, u)dBu(29)

with S1
t = S2

t+h = x and (S1
t )∗ = (S2

t+h)
∗ = y. Then condition (27) will follow

if

y + Et( sup
t<r≤T

S1
r − y)+ ≥ y + Et+h( sup

t+h<r≤T
S2

r − y)+.(30)

We prove this using a coupling argument. Use the Brownian motionWt to
define τ1 as the solution to

dτ1
r

dr
=

1
η(Wr + x, τ1

r )2
.(31)

Denote the inverse to τ1 by A1
r and define S1 via

S1
r ≡WA1

r
+ x(32)

Now
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dA1
r

dr
= η(WA1

r
+ x, τ1

A1
r
)2 ≡ η(S1

r , r)
2(33)

so that S1 is a weak solution to (28).
Now we can use the same Brownian motion W to construct τ2, A2, S2 such

that S2
r =WA2

r
+ x.

So

sup
t<r≤T

S1
r (ω) = sup

0≤m≤A1
T

Wm(ω) + x

and

sup
t+h<r≤T

S2
r (ω) = sup

0≤m≤A2
T

Wm(ω) + x

so to achieve the result it is sufficient to show that the time changes are ordered
correctly, A1

T (ω) ≥ A2
T (ω) ∀ ω. We will prove the equivalent result for the

inverse: τ1
t ≤ τ2

t ∀ t, ω.
Using the definition (31), we write

dτ1
r

dr
=

1
η(Wr + x, τ1

r )2

and

dτ2
r

dr
=

1
η(Wr + x, τ2

r )2

where τ1
0 = t and τ2

0 = t + h. Hence τ1
r and τ2

r solve the same differential
equation with different starting positions, τ2

0 > τ
1
0 . Thus τ

1
t ≤ τ2

t ∀ t, ω and so
A1

t (ω) ≥ A2
t (ω) ∀ t, ω.

�

Remark 4.4 If instead, volatility is underestimated, the seller can sub-replicate.
This is only true when the holder follows the optimal strategy q∗ and is not
true in general.
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5 Conclusion

The motivation for the problems in this paper is a practical one. In reality,
option sellers do not know the ’true’ dynamics of the underlying asset and any
model used is an approximation. One way of dealing with this is to overestimate
volatility. The results in this paper show that for a wide class of path dependent
options (including the passport option), overestimating volatility leads to super-
replication.

We have provided a short alternative proof of the result that convex, path-
independent option prices are increasing in volatility when the underlying is a
diffusion process. This is a well known result but our alternative proof is more
general in that it can be extended to cover exotic options.

This monotonicity result has been extended to path-dependent options whose
payoff is a function of the maximum (or minimum) of the process in Theorem
3.1. Using the link between passport and lookback options in Henderson and
Hobson [11], we apply this result directly to the passport option.

The extended monotonicity result has been used to obtain a comparison for
passport option prices. For general diffusion models, the price of a passport
option is increasing in the volatility of the asset price. This is similar to the
questions asked by El Karoui et al [7] and Hobson [12] in a level dependent
stochastic volatility model context.

Following from this, we have shown that regardless of the strategy followed
by the option holder, the seller will always super-replicate when they overes-
timate volatility. This again holds for general diffusion models and is proved
using a coupling argument.
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