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Abstract

A passport option is a call option on the profits of a trading account. In this
article we investigate the robustness of passport option pricing by incorporating
stochastic volatility. The key feature of a passport option is the holders’ optimal
strategy. It is known that in the case of exponential Brownian motion the
strategy is to be long if the trading account is below zero and short if the account
is above zero. Here we extend this result to models with stochastic volatility
where the volatility is defined via an autonomous SDE. It is shown that for
certain models of this type, the form of the optimal strategy remains unchanged.
This means that pricing is robust to misspecification of the underlying model.

A second aim of this article is to investigate some of the biases which become
apparent in a stochastic volatility regime. Using an analytic approximation we
are able to obtain comparisons for passport option prices using the exponential
Brownian motion model and some well known stochastic volatility models. This
is illustrated by a number of numerical examples. One conclusion is that fair
prices are generally lower in a model with stochastic volatility than in a model
with constant volatility.
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1 Introduction

Passport options are a relatively new type of option which give the holder a
zero-strike call option on the value of a trading account. The holder of the
option trades dynamically on an underlying. At exercise, if the trades have
realised a profit, the holder receives the proceeds of the trading account; if the
account is in deficit then the losses are bourne by the option seller. In return
for the option the holder makes an upfront payment, the option premium, to
the seller. Since the holder undertakes trades over the life of the option, pricing
becomes complex and must involve identifying the “best” trading strategy for
the holder.

Passport options were introduced in the paper of Hyer et al [16] and have
since been studied by Andersen et al [2], Ahn et al [1] and Lipton [18] using pde
methods. These methods use a scaling which relies on the fact that the underly-
ing is modelled by an exponential Brownian motion. More recently Henderson
and Hobson [10], Henderson [9], Shreve and Večeř [22] and Delbaen and Yor [4]
have used probabilistic methods to study the passport problem, giving different
insights into the solution of the problem. One of the interesting features of the
solution is the choice of trading strategy made by the option holder. In Hen-
derson and Hobson [10], the strategy obtained in [16] for exponential Brownian
motion was shown to remain optimal for a wide class of diffusion models. This
is an interesting generalisation as it means the passport option set-up is robust
to model misspecification.

In this paper, we show that this robustness feature can be taken further to
include stochastic volatility models. Not only can we allow for diffusion models
with level-dependent volatility, we can also use models where volatility is driven
by a second stochastic differential equation.

We answer the question: what is the optimal strategy for general stochastic
volatility models? We consider a certain class of models which includes many of
the popular models in the literature. We use probabilistic methods to analyse
the problem, and in particular the coupling of stochastic processes.

Related work on volatility and passport options in Henderson [8] shows that
the price of a passport option is increasing in volatility, given only the same
diffusion assumption mentioned earlier. That paper addresses hedging issues
and considers what happens when the seller of a passport option follows the
“wrong” model.

It is relevant to consider stochastic volatility models as they have evolved in
response to empirical evidence that call prices are inconsistent with the constant
volatility assumption. See the survey articles Frey [6] and Hobson [12]. These
models are incomplete, requiring some choice of the appropriate measure to use
for pricing. Interestingly, we show this choice of measure does not affect the
optimal strategy for a passport option, although it will affect the price.

It is convenient in the case where there is no correlation between the as-
set price process and the volatility process to express the price of the passport
option as an integral of a lookback option over the variance of the log-price.
In this set-up we can obtain prices analytically if we can find a way to de-
scribe the distribution of the variance. We price the passport option under
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the Hull and White model [14] and the Stein and Stein [23] (and Scott [21])
models using power series methods. In this way we show that implementing
stochastic volatility models for pricing passport options is quite straightfor-
ward. The results are compared to the prices obtained in the “Black-Scholes”
type model. We discover that the Black Scholes passport option price does not
necessarily underestimate the passport price with uncertain volatility. Instead
the relationship between the price in the Black-Scholes model and a stochastic
volatility alternative depends on the convexity of the lookback option price and
the parameter values considered. In particular the typical method of adjusting
the price upwards to account for (volatility) uncertainty is not appropriate for
passport options.

The remainder of the paper is structured as follows. The next section dis-
cusses stochastic volatility models and defines a class of models which we use
later. Those models in the literature fitting into this class are outlined. We
introduce the passport option problem in §3 and in §4 prove the form of the
optimal strategy for the class of models. The following section discusses pricing
the passport option in our stochastic volatility framework. Then §6 prices the
passport option under the Hull and White [14], Scott [21] and Stein and Stein
[23] models and compares prices to the simple exponential Brownian motion
model. Section 7 concludes, and an appendix contains proofs of results delayed
from the main text.

2 Stochastic volatility models

We will consider a broad class of models, which covers many of the popular
models in the literature and which allows for dependence on the asset price in
the coefficients of the asset price process. In §4 we derive the form of the optimal
strategy for this class of model. The models used in §6 for computations will
fall into this class.

Let Pu and ξu be defined via the pair of SDE’s

dPu

Pu
= aP (u, ξu, Pu)du+ σP (u, ξu, Pu)dBu

dξu = b(u, ξu)du+ η(u, ξu)dWu(1)

where aP (u, ξu, Pu) = µP (u, ξu, Pu)σP (u, ξu, Pu) and Bu,Wu are independent P-
Brownian motions. Here, Pu is the asset price and ξ is an autonomous stochastic
process which governs the volatility of the asset price process. Such stochastic
volatility models are known to be incomplete, as the introduction of a second
source of uncertainty via W means that options cannot be priced uniquely.

We could simplify the class of models in (1) by removing the P dependence
in the equation for the asset price. This gives

dPu

Pu
= a(u, ξu)du+ σP (u, ξu)dBu

dξu = b(u, ξu)du+ η(u, ξu)dWu(2)

where a(u, ξu) = µ(u, ξu)σP (u, ξu), and covers many of the models that are
studied in the literature.
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We wish to work with the discounted asset price Su = e−ruPu and obtain
the framework in which Su is a martingale. Here, and throughout this paper,
we assume the rate of interest r is constant for simplicity. Denote the set of
equivalent martingale measures which result in Su being a Q-martingale by
Q = {Q ∈ Q}. In the standard way (see for example Frey [6]) we see that S
and ξ solve the following stochastic differential equations under Q:

dSu = Suσ(u, ξu, Su)dBQu
dξu = [b(u, ξu) + η(u, ξu)λu]du+ η(u, ξu)dWQ

u(3)

where σ(u, ξ, s) = σP (u, ξ, erus), andBQu andWQ
u are independentQ - Brownian

motions. We assume throughout that σ, η, b have sufficient continuity properties
to ensure the pair of SDE’s in (3) have a weak solution unique in law, with the
strong Markov property. (See, for example, Chapter V of Rogers and Williams,
[20] and in particular Theorems 11.2 and 24.1. Note that we often apply these
theorems to the pair (logP, ξ).)

The parameter λu, often called the market price of risk, is a free param-
eter. In fact, as stated by Frey [6], market incompleteness is equivalent to
non-uniqueness of the market price of risk process.

Our models (1) (and (2)) cover many of the stochastic volatility models
studied in the literature. Hull and White’s (1987) model [14] assumes that the
square of volatility follows exponential Brownian motion and so takes a(u, ξu) =
µ̄, σP (u, ξu) =

√
ξu, η(u, ξu) = δξu and b(u, ξu) = b̄ξu with b̄, δ, µ̄ constants in

(2) to give

dPu

Pu
= µ̄du+

√
ξudBu

dξu = b̄ξudu+ δξudWu.(4)

Wiggins [24] models the log of volatility as an arithmetic Ornstein Uhlenbeck
process and has a(u, ξu) = µ̄, σP (u, ξu) = e

1
2
ξu , η(u, ξu) = δ and b(u, ξu) =

v̄−κξu with v̄, µ̄, κ, δ constants. Other models of this type are those of Scott [21]
and Stein and Stein [23]. They each use same stochastic differential equation
for ξ (volatility an arithmetic Ornstein Uhlenbeck process) and use exponential
Brownian motion for the asset price:

dPu

Pu
= µ̄du+ ξudBu

dξu = β(α− ξu)du+ γdWu.(5)

with γ, β, α constants. Here σ(u, ξu) = ξu.

Each of the models mentioned so far fits into the class in (1). More general
models such as the Markovian model of Hofmann et al [13] allow for dependence
on the asset price in the coefficients b and η as well as correlated Brownian
motions. Examples of such models are analysed in Heston [11], who derives
an efficient method for calculating option prices using characteristic functions.
Another stochastic volatility model is the Hull and White (1988) [15] model.
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It allows for non-zero correlation between the Brownian motions and volatility
follows a mean-reverting process. Models with correlation between B and W
are beyond the scope of this paper.

3 The Passport Option under Stochastic Volatility

A passport option is a call option on a trading account where the holder (buyer)
of the option undertakes a trading strategy which is subject to a constraint.
The constraint takes the form of a limit on the number of shares held. At
expiry T , the holder receives from the option seller either the positive gains
from trading or nothing if a loss was made. A key problem in the pricing
of passport options is determining the holders’ optimal strategy. Andersen et
al [2] and Hyer et al [16] show that when the price of the underlying follows
exponential Brownian motion the holder should invest up to the allowed limit,
buying when the value of the trading account is negative and selling otherwise.
This is shown to hold for more general diffusion models (with non-decreasing
diffusion coefficient) by Henderson and Hobson [10]. We will work in the set-up
of Henderson and Hobson [10] and give the essential definitions here.

First, if the buyer holds qu units of the underlying at time u then their gains
from trade ψu are defined by

dψu(q) = r(ψu(q)− quPu)du+ qudPu.

The second term corresponds to gains from investment in the risky asset and
the first term corresponds to the return on uninvested monies which is paid into
the trading account. Here we assume that the price dynamics in (1) hold and
that ψ0, the initial wealth, can be non-zero.

Upon discounting by the interest rate r we have the ’discounted’ gains Gu :=
e−ruψu which follow

dGu(q) = quσ(u, ξu, Su)SudB
Q
u = qudSu.(6)

Note that G(q) is a local martingale under the measure Q (in fact a martingale
for each q), see Chapter 2, Henderson [9] for details.

Given that the investor follows the admissible strategy (qu){0≤u≤T} the pass-
port option pricing problem is to find the strategy q∗u such that the price (at
time 0) is maximised:

sup
|qu|≤D

EQG+
T (q).(7)

Here EQ denotes expectation under a martingale measure Q. Note that to
specify the price completely we need to choose a measure Q by selecting a λu,
the market price of risk. Further, as part of the specification for a passport
option, the strategy qu is bounded by the constant D. This is to ensure the
seller does not risk unlimited losses. The problem is linear in the constraint so
henceforth we shall take D = 1.

When we extend the model for the underlying price process beyond expo-
nential Brownian motion, the key result in the pricing of passport options is
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the fact that the price can be identified with the price of a lookback option. In
particular, in Henderson and Hobson [10] (see also Delbaen and Yor [4]) it is
shown that the price of the passport option reduces to

1
2
sup

|vu|≤1
EQ(MT (v)− |G0|)+ +G+

0(8)

where Mp(v) =
∫ p
0 vrdSr and Mz(v) = sup0≤r≤z Mr(v). Further, v in the

supremum of (8) is related to the strategy q in (7) by vu = −qusgn(Gu). For
completeness we prove this result as Theorem 8.3 in the Appendix. Our goal
therefore is to find the optimising value of v. This is the subject of the next
section.

4 The Optimal Strategy for Stochastic Volatility mod-
els

We first state the results.

Theorem 4.1 Let Mp(v) =
∫ p
0 vrdSr and let Mz(v) = sup0≤r≤z Mr(v). For

the class of stochastic volatility models in (1), or equivalently (3), if sσ(u, ξ, s)
is non-decreasing in s (for all u, ξ) then, for any k, sup|vu|≤1 EQ(MT (v)− k)+

is attained by vu ≡ 1.

Corollary 4.2 For the given class of stochastic volatility models in (3), pro-
vided that sσ(u, ξ, s) is non-decreasing in s, the optimal strategy in the passport
option pricing problem is qu = −sgn(Gu).

Remark 4.3 Note that in both the above results the condition that sσ(u, ξ, s)
is non-decreasing in s is trivially satisfied if the model is of the simpler form
(2) with no dependence of σ(.) on S.

We shall proceed to prove the form of the optimal strategy by extending
the techniques in Henderson and Hobson [10].

Proof of Theorem 4.1
Let Nt = N0 +

∫ t
0 vudSu, let N0 be a given constant, and let

N t = max{N0, sup0≤p≤t Np}. Then with Sr = sup0≤u≤r Su we let

Zt = E
Q
t (max[N t, Nt + sup

t<p≤T
(Sp − St)])

= E
Q
t (max[N t −Nt + St, sup

t<p≤T
Sp]) + (Nt − St)

= f(N t −Nt + St, St, ξt, T − t) + (Nt − St)

where f is the expected value of ST given the information available at time t:

f(x, y, z, T − t) = E
Q
t (ST | St = x, St = y, ξt = z).(9)
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Denote b̃(u, ξu) = b(u, ξu)+ η(u, ξu)λu. Since f(St, St, ξt, T − t) is a martingale,
using Itô’s lemma we know that

f1dS = 0 = (f3b̃(t, ξt)dt − f4dt + 1
2
f22(dS)2 + 1

2
f33(dξ)2).(10)

We show that Zt is a supermartingale, and a martingale under the optimal
control v = 1. Using Itô’s lemma

dZ = (dN − dS) + (f1(1− v) + f2)dS + f3η(t, ξt)dWQ + [f3b̃(t, ξt)dt− f4dt

+ 1
2
f22(dS)2 + 1

2
f33(dξ)2] + 1

2
f11(1− v)2(dS)2 + f12(1− v)(dS)2.

After accounting for martingale terms and terms which sum to zero, using (10),
we need to show ( 1

2
(1 − v)2f11 + (1 − v)f12) ≤ 0 for all v ∈ [−1, 1]. (It is clear

that if v = 1 then Z is a martingale). It is convenient to use the representation

f(x, y, z, T − t) = x+ E
Q
t

(
sup

t≤r≤T
Sr − x

)+

where St = y. The arguments we use will be the same for all t so it is sufficient
to consider the case t = 0. We want to show

f12 = − ∂

∂y
Q

(
sup

0≤r≤T
Sy

r ≥ x

)
≤ 0 and

f11 + f12 = − ∂

∂y
Q

(
sup

0≤r≤T
Sy

r − y ≥ x

)
≤ 0.

where the notation Sy specifies the initial value Sy
0 = y. These two inequalities

are proved in the appendix. Theorem 4.1 follows.

5 Pricing the Passport Option

We now return to pricing the option in (8). Fix a pricing measure Q ∈ Q, see
the remarks in the next section about suitable choice of Q. By Theorem 4.1,
we have v∗ = 1 and the price becomes

1
2
EQ(ST − S0 − |G0|)+ +G+

0 .(11)

Importantly, these results hold for any Q ∈ Q. This is interesting as it means
that the strategy in Henderson and Hobson [10] which held for a certain class of
models, remains optimal for quite a range of stochastic volatility models also.
The optimal strategy is therefore fairly robust to model mis-specification.

As it is stated above, calculation of (11) is a numerical problem. We are pric-
ing an option (a fixed-strike lookback call) under stochastic volatility. Hence-
forth we will restrict ourselves to models of the type (2). Recall that we are
assuming no correlation between the asset price and volatility.

If the asset price P and volatility ξ are uncorrelated, and the drift and
diffusion coefficient of ξ do not depend on P then ξ and B are independent.
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This is the case for models of type (2). Of course, for models with P dependence
in the diffusion coefficient, we have proved the optimal strategy but techniques
to calculate prices will be more complicated. This is left as further work and
we concentrate on the case in (2). We have shown a large number of models in
the literature fit into this class.

Conditional on the path (ξs){0≤s≤u},
∫ u
0 σ(s, ξs)dBs is Gaussian with zero

mean and variance
Vu =

∫ u

0
σ2(s, ξs)ds.(12)

Then Su = S0e
Ỹu with

Ỹu =
∫ u

0
σ(s, ξs)dBQs −

∫ u

0

1
2
σ2(s, ξs)ds.

Under Q, and conditional on (ξs){0≤s≤u}, Ỹu is Gaussian with mean − 1
2
Vu and

variance Vu. Then with K = S0 + |G0| and total variance VT ,

EQ(ST −K)+ = EQ
[
EQ
((

ST −K
)+ |

∫ T

0
σ2(s, ξs)ds

)]

= EQ[LB(S0;VT ;K)] =
∫

VT =v
LB(S0; v;K)fQ(dv)(13)

where fQ is the density function for the distribution of the total variance and
LB(S0; v;K) is the time 0 price of a fixed strike lookback call option with strike
K, expiry T and volatility

√
v/T under exponential Brownian motion.

The lookback price is

LB(S0; v;K) = EQ(S0e
sup0<u≤T (

√
v
T

BQu− 1
2
( v

T
)u) −K)+

and standard arguments, see Goldman et al [7], yield

LB(S0; v;K) = S0[N(d) +
√
v(N ′(d) + dN(d))] −KN(d−

√
v)

where
d =

− ln(K/S0) + 1
2
v√

v
.

Putting K = S0 + |G0| gives

LB(S0; v;S0 + |G0|) = S0[N(d)−N(d−
√
v)

+
√
v(N ′(d) + dN(d))] − |G0|N(d −

√
v).(14)

Therefore, it is sufficient to characterise the law of VT to derive the law of
the option price, as discussed by Hobson [12], Frey [6] and Ball and Roma [3].
Several techniques have been proposed in the literature, involving computing
the moment generating function of VT . Both Hull and White [14] and Stein
and Stein [23] present such methods.

Hull and White [14] use power series expansion methods and require the
first few central moments of the distribution of the variance. An alternative
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used by Stein and Stein [23] is to use Fourier inversion methods. Ball and
Roma [3] note that these two techniques can be extended to any price which
is conditionally lognormal and the moment generating function of the variance
possesses a known analytic form. They also remark that the power series ex-
pansion provides an alternative and insightful way to compute option prices
within the Stein and Stein [23] model. We adopt this approach which also has
the advantage of easy comparison between the two models.

The techniques of Hull and White [14] are generalised in the later paper
Hull and White [15] to cope with non-zero correlation. Alternatively, Heston
[11] looks at the Fourier transforms of conditional probabilities that the op-
tion expires in the money, also an analytic approach. Other approaches taken
to solve for prices include Monte Carlo simulation (used by Scott [21]), and
numerical methods in Wiggins [24].

In the next section we calculate the price using a power series approach.
We then price the passport option using the Hull and White [14] and Stein and
Stein [23] models for a number of parameter sets.

6 Calculating Passport Option Prices Analytically

using Power Series Expansion methods

We will adapt the method used by Hull and White [14] to calculate the price
given in (13) and obtain the passport option price to be

1
2

∫
v
LB(S0; v;S0 + |G0|)fQ(dv) +G+

0 .(15)

This will be done for the price dynamics in (4), the Hull and White [14] model
and the Stein and Stein [23] model in (5). We need to choose a λu under
which the distribution of the total variance is calculated. There are many
different ways to do this in the literature, either on economic arguments, or for
tractability. We follow a popular method here and take the “minimal martingale
measure” of Follmer and Schweizer [5], corresponding to λu = 0. Henceforth
this particular pricing measure will be denoted Q0 with expectation operator
E0.

We note that the option price is a nonlinear function of the total variance
V ≡ VT and so we expand LB(S0; v;K) in a Taylor series about the expected
value E0V of V :∫

v
LB(S0; v;K)fQ0(v)dv = LB(S0;E0V ;K) + 1

2

∂2LB(.)
∂v2

∣∣∣∣
E0(V )

Var(V )

+
1
6
∂3LB(.)
∂v3

∣∣∣∣
E0(V )

Skew(V ) + higher order terms . . .(16)

It is possible to compute explicit expressions for the derivatives of the lookback
price and the moments for both models under consideration.

Firstly we compare the Hull and White [14] model to exponential Brownian
motion, then in §6.2 we examine the Stein and Stein [23] model. The exponential
Brownian motion prices are calculated using (11).
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6.1 The Hull White model

Changing measure for the Hull and White model in (4), we have

dSu

Su
=

√
ξudB

Q0
u

dξu = b̄ξudu+ δξudW
Q0
u

where dWQ0, dBQ0 are independent Q0-Brownian motions.
The moments of V =

∫ T
0 ξudu for the Hull and White model with b̄ = 0 are

given below. These are as stated in Hull and White [14].

E0V = ξ0T

E0(V 2) =
2(eδ2T − δ2T − 1)

δ4
ξ2
0

E0(V 3) =
e3δ2T − 9eδ2T + 6δ2T + 8

3δ6
ξ3
0 .

We first calculate the price of a passport option for an example with S0 =
100, G0 = 10, T = 1, δ = 0.2. The results are given in Table 6.1 and were
calculated using Maple. We use the first three terms in (16) although omitting
the third term makes a negligible difference.

ξ0 EBM HWmodel

0.0 10.0 10.0
0.01 10.97628 10.97602
0.04 14.53221 14.5233
0.09 18.88084 18.8643
0.25 28.78122 28.75127
0.36 34.23635 34.20029
0.64 46.12905 46.08185

Table 6.1: Passport option price for Hull and White model and Black Scholes
(EBM) using S0 = 100, G0 = 10, T = 1, δ = 0.2, and with volatility ranging
from 0 to 0.8. Note that the volatility parameter used in the calculation of the
exponential Brownian motion price is

√
ξ0 so that the expected total variance

is the same in each model.

We can display the percentage difference in the prices on a graph. The
difference refers to the Hull and White price of the passport option minus
the price for the simple exponential Brownian motion model expressed as a
percentage of the Black Scholes price. This convention will be used in all further
graphs.
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Figure 1: Percentage difference in the passport option prices using the
stochastic volatility model (Hull and White) and exponential Brown-
ian motion with S0 = 100, T = 1, G0 = 10, δ = 0.2 and 0 ≤ ξ0 ≤ 0.4.

From Figure 1 we see that the stochastic volatility price is lower than the
exponential Brownian motion (Black Scholes) price apart from for very small
ξ0 values. This is unusual in that often the introducion of stochastic volatility
increases the price of an option. This means that the standard practice of ad-
justing prices upwards to allow for the uncertainty of volatility is inappropriate
for the passport option. This can be explained by looking at the convexity of
the lookback pricing function in (14).

Recall the lookback option price under stochastic volatility in (13) is

E0[LB(S0, V,K)]

and we multiply by a half and add G+
0 to get the passport option price. If the

function LB(.) is locally concave in v then E0LB(S0, V,K) < LB(S0,E
0V,K)

and so the stochastic volatility price is lower than the Black Scholes price.
Conversely, if LB(.) is convex in v then the inequality is reversed. Numerically
evaluating the second derivative of LB(.) with respect to v showed that for our
parameters, the sign changed from positive to negative when v = 0.01. Using
E0V = ξ0 we can relate this to a sign change at ξ0 = 0.01.
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Figure 2: Percentage difference in the passport option prices using
the Hull and White model and exponential Brownian motion with
S0 = 100, T = 1, G0 = 10, 0 ≤ ξ0 ≤ 0.36 and 0 ≤ δ ≤ 0.6.

Figure 2 shows the relationship between the stochastic volatility option price
and the price under an exponential Brownian motion model for a range of values
of the parameter δ. Observe first that the positive differences of Figure 1 are
no longer visible due to the coarser scale of the graph. Also, as δ → 0 the
Hull White price approaches the exponential Brownian motion price, as is to
be expected. Further, even for values of δ about 0.6, the percentage difference
is still only -0.8% for ξ0 around 0.36.

Now we consider the effect of changing the initial value of the trading strat-
egy G0. If we replace G0 = 10 with G0 = −10 then the only change in the
passport option price (15) is the change in value G+

0 . Thus Table 6.1 can be
modified to allow for G0 = −10 by simply subtracting 10 from each term. In
particular, the results for negative initial values can be deduced directly from
those with positive initial values. However, because passport option values
are much smaller in the negative case, it is inappropriate to display results in
percentage terms.

Now consider the effect of varying the absolute value of G0. The results
for the Hull White model with G0 = 50 are presented in Figure 3. The region
over which the constant volatility model underestimates the passport price in
a stochastic volatility regime is much wider. This is because when G0 = 50
the range of values for volatility over which the lookback pricing function is
convex is also much wider than when G0 = 10 (see Figure 7). In particular,
for low values of ξ0, LB(S0, v, S0 + |G0|) is convex at v = E0V = ξ0T , so the
effect of stochastic volatility is to increase the option price. It remains true in
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Figure 3: Percentage difference in the passport option prices using
the Hull and White model and exponential Brownian motion with
S0 = 100, T = 1, G0 = 50, 0 ≤ ξ0 ≤ 0.36 and 0 ≤ δ ≤ 0.6.

this example that for large values of ξ0, E0V is large and stochastic volatility
decreases the price. Indeed, this statement will always be true: for any value of
G0, a sufficiently large value of the initial volatility ξ0 will lead to the passport
option price being overestimated by the Black Scholes model. Finally, the
magnitude of the effects becomes larger as δ increases. This is because as δ
increases, the variance of volatility increases and this has a direct impact on
price differentials as given in the second term on the right-hand-side of (16).

6.2 The Stein and Stein model

We consider the Stein and Stein model [23] in (5) under the pricing measure:

dSt

St
= θtdB

Q0
t

dθt = −β(θt − α)dt + γdWQ0
t(17)

where WQ0, BQ0 are independent Brownian motions, and θ is playing the role
of ξ from earlier sections.

For this model we have V ≡ VT =
∫ T
0 θ2

udu and the driving Markov process
θ represents volatility rather than variance. The first moment for the Stein and
Stein model is given below, for brevity the others are omitted.

E0V =
(
γ2

2β
+ α2

)
T+

2α
β
(θ0−α)(1−e−βT )+(1−e−2βT )

(
θ2
0 + α2 − 2αθ0

2β
− γ2

4β2

)

13
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Figure 4: Percentage difference in the passport option prices using
the Stein and Stein model and exponential Brownian motion with
S0 = 100, T = 1, G0 = 10, β = 1, α = 0.2 γ = 0.2 and 0 ≤ θ2

0 ≤
0.64.

This agrees with the expression given in Ball and Roma [3]. In calculating
our approximation to the price of the passport option under stochastic volatility
we use the first two terms in the expansion as it is expected (see Ball and Roma
[3], Stein and Stein [23]) that the third term will not have a significant effect.

For this model we have broadly similar behaviour to the Hull White model
in that again, the convexity of the lookback function determines the deviation
from the exponential Brownian motion model. Note again that the exponential
Brownian motion price is calculated using a calibrated variance v = E0V to
ensure an accurate comparison with the Stein and Stein price. Consider first
the situation when G0 = 10, shown in Figures 4 and 5.

First notice that if γ = 0 the price difference is zero as E0V = V and
volatility is deterministic. Secondly, in the Stein and Stein model, the volatility
of volatility is independent of θ so even when θ0 = 0 we still have a difference
between the two prices. This is in contrast to the Hull White model where the
diffusion coefficient of the process ξ is linear in ξ. In that case, when ξ0 = 0, ξ
is deterministic, and indeed identically zero.

We see in Figure 5 that the Stein Stein price is less than the Black Scholes
price for all values of θ0. This can be explained because we have G0 sufficently
small so that LB(S0, v, S0 + |G0|) is concave over all values of v considered.
This is because, (as noted earlier) the second derivative of LB(S0, v, S0 + |G0|)
with respect to v is negative for values of v above about 0.01, and, whatever
the value of θ0, E0V is bounded below. For our parameter values this lower
bound is at 0.033.

Notice that the price differences are larger than those for the Hull White
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Figure 5: Percentage difference in the passport option prices using
the Stein and Stein model and exponential Brownian motion with
S0 = 100, T = 1, G0 = 10, β = 1, α = 0.2, 0 ≤ θ2

0 ≤ 0.64 and
0 ≤ γ ≤ 0.6.

model, mainly due to parameter choice resulting in a greater Var(V ). Observe
in Figure 5 that as θ2

0 becomes large, the percentage differences decrease. This is
because, as v gets large, the concavity of the lookback pricing function decreases.
To illustrate the effect on prices of higher values of G0, we calculate a second
example using G0 = 50, given in Figures 6 and 8.

This time we have positive differences for small values of the initial squared
volatility θ2

0. This is because LB(S0, v, S0 + |G0|) is now convex over a wider
region. However, θ2

0 large puts E0V into the concave region. See Figure 7 for
the second derivative of LB(S0, v, S0+ |G0|) with respect to v, showing that for
low v the function is convex, and higher values of v lead to concavity.

In Figure 8, we see for small θ2
0 and small γ, increasing γ leads to a larger

percentage difference. This is due to increasing Var(V ). However, as γ increases
further, the price differences start to get smaller, before ultimately becoming
negative. This is because E0V is also increasing and LB′′(S0,E

0V, S0 + |G0|)
switches sign to negative.

In summary, we observe substantially different behaviour for the new model.
Whilst generally the effect of stochastic volatility is to depress passport option
values the precise nature of this relationship is model dependent.
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7 Conclusion

In this paper we have shown that the optimal strategy for a passport option
as found by Hyer et al [16] and Andersen et al [2] is fairly robust to changes
in the model. In particular we have shown that for a wide class of stochastic
volatiltiy models, including many popular models in the literature, the optimal
position for the option holder is to take a short position in the underlying when
the gains process is positive and to take a long position when the gains are
negative.

The price we calculate for the option is based on the assumption that the
purchaser behaves optimally and follows this strategy. If the option holder acts
in a sub-optimal fashion then the option writer can adapt his hedge to cover
his obligations and to make riskless profits. See Henderson [9] and Shreve and
Večeř [22] for a discussion of the form of the hedge.

The second objective of this article was to investigate the impact of stochas-
tic volatility on passport option prices, and to compare the results with a con-
stant volatility, Black-Scholes world. The key determinant of the difference in
prices is the convexity of the price of a related lookback option.

By definition the passport option is a call option on a trading account with
strike zero. If the initial value of the trading account is zero, so that in the nota-
tion of previous sections G0 = 0, then the price of the lookback option is concave
in the total variance parameter v. As a consequence, if the pair consisting of
underlying and volatility follow a model as at (1), then the stochastic volatil-
ity model will underprice a passport option relative to the constant volatility
model. This is the the opposite relationship to the effect of stochastic volatility
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Figure 7: LB′′(100, v, 150) as a function of variance 0 ≤ v ≤ 0.6
with T = 1, G0 = 50

on call options.
During the lifetime of the option, and in particular when the trading ac-

count contains a non-zero amount the picture is more complicated. In these
circumstances the impact of stochastic volatility depends on the model, the
parameter values and the ratio of the trading account to the price of the under-
lying. Although the general pattern remains that stochastic volatility decreases
the value of the passport option there are circumstances in which the reverse is
true.

In this paper we have concentrated on models in which the underlying asset
and volatility process are instantaneously uncorrelated. In this case we have
been able to identify the optimal strategy and hence deduce the fair price for
the option. When the driving Brownian motions B and W in (1) are correlated
the picture is more complicated. From the representation in (18) it remains
optimal to attempt to maximise the expected local time of G at zero. Since
the local time at 0 depends on the volatility and the price level there is no
simple rationale for determining the optimal strategy, and consequently it is
impossible to price the passport option exactly.

Instead, in this paper we have concentrated on stochastic volatility models
satisfying (1). The Hull-White and Stein-Stein models are of this form. Figures
1 - 8 show the impact of stochastic volatility within these models. We expect
that this behaviour will be typical of the general behaviour and can provide
a realistic guide to the problem of pricing passport options with stochastic
volatility.
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options with stochastic volatility during a visit by the first author to the Uni-
versity of Technology, Vienna, in May 1999, and people at seminars at Erasmus
University, Rotterdam, and an ETH Risk-Day.
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8 Appendix

In the appendix we provide proofs of results which were postponed from the
main text.

Lemma 8.1 Under the model (3), Q(sup0≤r≤T Sy
r ≥ x) is non-decreasing in y.

Proof: Although S is not Markov, the pair (S, ξ) will be Markov and we exploit
the independence of S and WQ to p rove the result. Take two realisations of
the pair (Sy1 , ξ), (Sy2 , ξ), with the same realisation of the volatility process ξ
and with S starting at y1 and y2 respectively where y2 > y1.

Define the first crossing time of Sy1 and Sy2 to be

τ = inf
u
{Sy2

u ≤ Sy1
u }

and let

S̃y1
u =

{
Sy1

u 0 ≤ u ≤ (τ ∧ T )
Sy2

u (τ ∧ T ) ≤ u ≤ T

Then by construction S̃y1
u ≤ Sy2

u for all u and all ω. The strong Markov property
of the pair gives (S̃y1

u , ξu)
law= (Sy1

u , ξu). So

Q

(
sup

0≤r≤T
Sy2

r ≥ x

)
≥ Q

(
sup

0≤r≤T
S̃y1

r ≥ x

)
= Q

(
sup

0≤r≤T
Sy1

r ≥ x

)

as required. �

Lemma 8.2 Under the model (3), with sσ(u, z, s) non-decreasing in s for each
u and z, we have Q(sup0≤r≤T Sy

r − y ≥ z) is non-decreasing in y.

Proof: Take y2 > y1. We want to show

Q

(
sup

0≤r≤T
Sy2

r − y2 ≥ z

)
≥ Q

(
sup

0≤r≤T
Sy1

r − y1 ≥ z

)
.
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In particular, for each ω let ξ(ω) be given as the solution to its autonomous
SDE. Define (Γi)i=1,2 to be the solution (up to the first explosion time, if any)
of the ordinary differential equation

dΓi
s

ds
=

1
σ2(Γi

s, ξΓi
s
,Ws + yi)(Ws + yi)2

.

Denote the inverse to Γi by Ai and define

Syi
t = yi +WAi

t
.

Then we have that

dAi
u

du
= σ2(u, ξu,WAi

u
+ yi)(WAi

u
+ yi)2

= σ2(u, ξu, S
yi
u )(Syi

u )2

and hence dSyi
t = σ(t, ξt, S

yi
t )Syi

t dBi
t for some Brownian motion Bi, see Karatzas

and Shreve [17, Theorem 3.4.6]. In order to prove that Q(sup0≤s≤Ai
T
Ws(ω) ≥ z)

is non-decreasing in yi it will be sufficient to show that Γ1
T (ω) ≥ Γ2

T (ω), ∀ω.
Since y2 > y1 and Suσ(u, ξu, Su) is non-decreasing in S,

dΓ1
s

ds

∣∣∣∣
s=0

=
1

σ2(0, ξ0, y1)(y1)2
≥ 1

σ2(0, ξ0, y2)(y2)2
=

dΓ2
s

ds

∣∣∣∣
s=0

Defining τ = infu{Γ2
u(ω) < Γ1

u(ω)} we have Γ2
τ = Γ1

τ = γ (say) and

dΓ1
s

ds

∣∣∣∣
s=τ

=
1

σ2(γ, ξγ ,Wτ + y1)(Wτ + y1)2
≥ 1

σ2(γ, ξγ ,Wτ + y2)(Wτ + y2)2
=

dΓ2
s

ds

∣∣∣∣
s=τ

Thus Γ1
u(ω) ≥ Γ2

u(ω) for all u, uniformly in ω, as required. �

Now we consider the model in (3) with Mp(v) =
∫ p
0 vrdSr and Mz(v) =

sup0≤r≤z Mr(v) and prove the main result relating the price of a passport op-
tion to the price of a lookback option. This result extends and corrects the
proof of Proposition 3.3b in ([10]).

Theorem 8.3 If sσ(u, ξ, s) is non-decreasing in s, then

sup
|q|≤1

EQ
(
k +

∫ T

0
qrdSr

)+

= k+ + 1
2
sup
|v|≤1

EQ(MT (v)− |k|)+

= k+ + 1
2
EQ(ST − (S0 + |k|))+.

Proof: Fix q and set Gt(q) = k+
∫ t
0 qudSu. Using Tanaka’s formula (see Revuz

and Yor [19, VI Theorem 1.2]) on |Gt| we have

|GT (q)| = |k|+
∫ T

0
sgn(Gu(q))dGu(q) + L

G(q)
T (0)(18)
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where LG(q)
T (0) is the local time of process G(q) at level zero until time T .

The Skorokhod lemma (see Revuz and Yor [19, VI Lemma 2.1]) gives

L
G(q)
T (0) =

(
sup

0≤u≤T

(∫ u

0
−sgn(Gs(q))qsdSs

)
− |k|

)+

=

(
sup

0≤u≤T

(∫ u

0
vsdSs

)
− |k|

)+

where
vs = −sgn(Gs(q))qs.(19)

So taking expectations in (18) and using the characterisation for the local time
above and the definition of Mu(v)

EQ|GT | = |k|+ EQ

(
sup

0≤u≤T

(∫ u

0
vsdSs

)
− |k|

)+

= |k|+ EQ(MT (v) − |k|)+.

Further, using the martingale property of G,

EQG+
T = k+ + 1

2
EQ(MT (v)− |k|)+.(20)

Since for any q with |q| ≤ 1 we can define v as at (19) with |v| ≤ 1, it follows
that

sup
|q|≤1

EQG+
T (q) ≤ k+ + sup

|v|≤1

1
2
EQ(MT (v)− |k|)+.(21)

Given (20) we would like to conclude that there is equality in (21). In fact
this is true quite generally, see Delbaen and Yor [4]. The issue is that given
|v| ≤ 1 it is not clear that q can be defined via (19) since q appears twice both
explicitly and implicitly via G. However from the results in §4 we know that
the maximising v in

sup
|v|≤1

1
2
EQ(MT (v)− |k|)+

is v = 1. Thus it is sufficent to find q̂ with

EQG+
T (q̂) = k+ + 1

2
EQ(MT (1) − |k|)+.(22)

Define Ĝ via dĜ = −sgn(Ĝ)dS. This equation has a (weak) solution under
the hypotheses on σ in §2, (see Henderson [9]) so that with (q,G) defined by
q̂ = −sgn(Ĝ(q̂)) we have, from (20)

k+ + 1
2
EQ(MT (1) − |k|)+ = EQ(ĜT (q̂))+ ≤ sup

|q|≤1
EQG+

T (q).

Thus there is equality everywhere in (21) and hence the theorem is proved.
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