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Abstract

In this paper, we propose a general methodology to analyze model risk for
discount bond options within a unified Heath, Jarrow, Morton (1992) frame-
work. We illustrate its applicability by focusing on the hedging of discount
bond options and options portfolios. We show how to decompose the agent’s
"model risk” Profit and Loss, and emphasize the importance of the position’s
gamma in order to control it. We further provide mathematical results on
the distribution of the forward Profit and Loss function for specific Markov
univariate term structure models. Finally, we run numerical simulations for
naked and combined options’ hedging strategies in order to quantify the sen-
sitivity of the forward Profit and Loss function with respect to the volatility
of the forward rate curve, the shape of the term structure, and the charac-
teristics of the position being hedged.



Introduction

Model risk has been an ongoing source of concern for financial institutions
trading and managing interest rate sensitive positions. Indeed, the academic
literature came up over the past decade with a variety of term structure
modeling approaches that are used to price derivatives or manage global
interest rate exposures of linear, convex or concave positions!. It is not
trivial in such a context to choose the appropriate model since there have
been very little studies dealing with the definition and formal analysis of
model risk within nested and non-nested term structure model specifications.
Should one use an equilibrium or a no-arbitrage based model, a one versus a
multifactor model? Should one specify the state variables’ process as being
time-homogeneous or not? Furthermore, should the model be calibrated or
not to the current term structure of interest rates to preserve the global
consistency of the valuation process? These are some of the questions that
arise at some point or another in any financial institution managing interest
rate sensitive positions under several operational constraints such as the fact
that it needs to rely on an accurate, preferably analytical, model that can
also easily be extended to new derivative products both for trading and risk
management purposes.

Several introductory remarks should be made at this point: first, it is
very delicate to define any pricing or hedging strategy test as a meaningful
indicator of model risk since these are always joint tests that can be rejected
either because of the model’s irrelevance or because markets are not efficient.
Second, it is not necessarily the case that a good pricing model will also pro-
vide the best hedging or risk management alternative. The former focuses on
absolute pricelevels, while the latter crucially depends on price variations and
thus, is more sensitive to the gamma of a position; see Bakshi et al. (1997).
Therefore, these two objectives may not lead to identical model ranking. Fi-
nally, the definition of model risk will always remain agent or institution’s
specific: just think about whether you want to buy or sell a given option, in
the former case you are clearly less sensitive to any model that might under-
value the derivative while clearly this risk has to be minimized for the option
seller. Similarly, a hedging strategy might be sensitive to intermediate losses
if there are cash constraints — precluding negative wealth, for instance — or
other intra-daily limits imposed on the agent while it might be totally path-
independent in other institutions. Thus, the composition of the portfolio,
the objectives and the constraints stemming from the environment in which
model risk is examined will clearly have to be incorporated into the analysis.

A large number of highly reputable banks and financial institutions have

'For a survey on interest rate models, see Gibson, Lhabitant and Talay (1997).



already suffered from extensive losses due to model risk. For instance, in
1992, an inadequate model of the prepayment function resulted in a 200
million USD in the mortgage-backed securities market for J.P. Morgan; in
1987, an incorrect yield curve model resulted in a 350 million USD loss
with stripped securities at Merrill Lynch. More recently, in March 1997,
improper volatility estimations for interest rate options costed 90 million
GBP to NatWest Markets; similarly, Bank of Tokyo-Mitsubishi had to write
off 83 million USD on its U.S. interest rate derivatives book due to the in-
appropriate application of an interest rate option pricing model. Yet, one
must recognize that until now most academic studies have essentially defined
model risk in terms of some basic statistics — such as the mean, the standard
error or the root mean squared error — of the price differences computed in
relative or absolute terms. As far as hedging or replicating strategies are con-
cerned, the suitability of the model is usually defined in terms of the hedging
mean excess return’s significance and /or its residual variance. In both cases,
such statistics for the error terms are clearly inappropriate if the latter are
not i.i.d. distributed (which is seldom the case) unless we assume that the
manager or the shareholder does indeed display a quadratic utility function.

Moreover, the theoretical literature on the subject is rather poor. Most
papers are limited to a typology of model risks (see Crouhy, Galai and Mark
(1998) and Gibson et al. (1999)) or attempt to estimate model risk numeri-
cally for some specific products and /or applied derivatives pricing models like
the well known Black and Scholes model (see Figlewski and Green (1999),
Jacquier and Jarrow (1996)).

The definition of a proper model risk metric has also gained regulators
support as far as institutions aggregate banking books or trading portfolios
are concerned. Thus, it is not surprising to observe that even in the context
of capital adequacy rules for managing financial institutions, the BIS applies
a multiple — ranging from three to four depending on whether or not the
institution ranks well on the backtesting — to the daily VaR estimated by
firms’ internal models. This certainly represents an arbitrary but nevertheless
indirect proof that, in the context of risk management, model risk is implicitly
accounted for by the regulators.

The purpose of this study is to provide an analytical framework in which
we formalize model risk as faced by a financial institution which acts either
as a market maker — posting bid and ask prices and hedging the instrument
bought or sold — or as an agent who takes the market price as given and
hedges its transaction until a predetermined date (which does not necessarily
extend until the maturity of his long or short position). We illustrate its
applicability by focusing on the hedging of discount bond options and options
portfolios. We first examine the replicating strategy, assuming that the agent



trades a single derivative, namely a zero coupon risk-free bond written option.
We then extend the approach to more complex derivatives positions such as
spreads or straddles. We also assume that there are no market imperfections
— for a discussion of how the latter market errors can be incorporated into the
problem, see the study by Jacquier and Jarrow (1996) — so that the market
price is indeed the fair value of the underlying contingent claim whenever it
is used.

The study uses the univariate Markov Heath, Jarrow, Morton (1992) -
hereafter HJM - class of contingent claims valuation models and thus en-
compasses several continuous time term structure specifications implicitly
through adequate specifications of the forward rates volatility curve. Model
risk will be analyzed by assuming that the "true” term structure is charac-
terized by a model belonging to the univariate HJM class while the agent or
the market maker chooses to rely on another model belonging to the same
class. In reality, the "true” model is unknown and thus, it is more appro-
priate to consider model risk analysis as being performed with respect to
"benchmark” models selected by the investor, the risk controller or the reg-
ulator. For instance, the agent could use a one factor Vasicek model while
the benchmark is a univariate HJM model with a time-dependent volatil-
ity specification. The objective is to define the agent’s profit and loss model
risk function given that he uses a self-financing ” pseudo-replicating” strategy
and, to analytically (or numerically) solve and characterize its distribution
at any time.

The first contribution of the study relies in an analytical decomposition
of the P&L into three distinct terms: the first can be defined as the degree
of freedom in initial pricing (date 0), the second term is the pricing error
evaluated as of the current date ¢, and the final term is the cumulative
replicating error. This last term is shown to be essentially determined by
the agent’s erroneous “gamma” multiplied by the squared deviation between
the true and the agent’s forward rate volatility curves specifications. This
decomposition emphasizes the need to control the trader’s or the institution’s
gamma. Given the inevitable nature of model risk, such a monitoring is
required in order to minimize model risk without inducing volatility gaming
strategies with respect to the benchmark model.

Second, we derive the analytical properties of the law of the forward P&L
function for some simple forward rate volatility specifications. Finally, we
conduct numerical simulations to illustrate and characterize the properties
of model risk P&L function with respect to the moneyness, the time to
maturity and the objective function chosen by the institution to evaluate
the risk related to the replicating model misspecification with respect to a
benchmark.



Aside from providing a fairly general yet conceptual framework for as-
sessing model risk for interest rate sensitive claims, this approach has two
interesting properties: first, it can be applied to a fairly large class of univari-
ate Markov term structure models (nested in the HJM general specification).
Second, it shows that model risk does indeed encompass three well-defined
steps, that is, the identification of the factors, their specification and the
estimation of the model’s parameters. The elegance of the HJM term struc-
ture characterization is that those three steps can all be recast in terms of
the specification and the estimation of the ”proper” forward volatility curve
function. Finally, the analysis conducted for univariate Markov term struc-
ture models could easily be extended to non-Markov HJM models through
a proper redefinition of the state space and the relevant definition of the
hedging parameters.

The structure of the paper is the following. In section 1, we briefly de-
scribe the HJM term structure framework and define the basic principles
underlying contingent claims replicating strategies. In section 2, we define
the agent’s hedging strategy under model risk, and analytically characterize
the forward model risk Profit and Loss (P&L) function in section 3. Section 4
provides mathematical results characterizing the law of the P&L function for
specific term structure models and contingent claims’ payoffs. We then rely
on numerical simulations in section 5 to compute the moments and quantiles
of the model risk P&L function for simple and more complex derivatives’
positions.

1 A review of the HIM contingent claim pric-
ing framework

We suppose that the real economy can be described by one of the univariate
Markov HJM models, and that the price of any discount bond satisfies the
valuation equation as provided by this model. In this context, we analyze
interest rate model risk from the perspective of an agent such as, for instance,
a market maker who needs to post bid/ask prices, or a financial institution
that takes the prices as given and is interested in the risk management of its
P&L. We rule out other market imperfections such as market frictions, infor-
mation asymmetries, etc., that a market maker will face. Thus, his bid ask
spread is also a markup in his quotes for bearing model risk?. Furthermore,
we do not explicitly attempt to model the operational factors that may create
model risk (human skills, moral hazard, partially observable data, etc.).

2See in particular Figlewski and Green (1999).



1.1 The HIM framework: an overview

We consider a continuous-time economy, with a complete and perfect market
in the Harrison and Kreps (1979) and Harrison and Pliska (1981) sense. We
take as given a complete filtered probability space (2, F,P) with a filtration
F = {F;t € [0,T*]} where T* > 0 is a finite time horizon. The set F;
represents the whole information available at time t. We make the usual
assumption that Fg is trivial and Fp~ = F.

To begin with, we suppose that, in the real world, the term structure
dynamics is characterized by a univariate Markov model belonging to the
Heath-Jarrow-Morton (1992) (hereafter: HJM) general framework. That
is, at time ¢, the instantaneous forward rate with maturity T satisfies the
following equality under PP:

f@&,T)=f(0,T)+ /Ot ,uf(s,T)ds + /Ot o¢(s, T)dWs, (1)

where W is a standard one dimensional Brownian Motion and where o (-, T')
is a bounded function on [0,7]. We furthermore limit mathematical treat-
ment of the problem to the Markov univariate HJM models® specifying
o¢(-,T) at most as a deterministic function of ¢ and 7. While the proposed
formal treatment of model risk could be extended to path-dependent mul-
tivariate HJM models, its treatment would however be much more complex
and difficult to interpret in terms of the usual hedging parameters.

The major contribution of Heath, Jarrow and Morton was to show that
in order to allow model (1) to be consistent with arbitrage-free pricing, the
parameters i(t,T) and o (t,T) cannot be freely specified. More precisely,
in order to avoid arbitrage opportunities, there must exist an adapted process
A(t) which is independent of the maturity 7" such that under P

s, T) =y, | [ (s, A @)

It is possible to interpret A(s) as a unitary interest rate risk premium, which
is independent of the maturity 7' and has to be exogenously specified (while
controlling for its consistency with an equivalent risk-neutral martingale mea-
sure).

Since we primarily want to focus on the specification rather than on
estimation, we will abstract from the rather delicate task of having to specify
the risk premium. Thus, for simplicity, we analyze model risk directly under

3See Jeffrey (1995).



the risk-neutral equivalent martingale measure, and thus set A = 0*. In
such a case, the dynamics of the yield curve is completely described by the
function o (s, T'), since the function y (s, T) is uniquely related to o (s, T'):

pp(s, T) = 0s(s,T)o%(s,T), with o}(s,T) := / of(s,u)du. (3)

In the following developments, we will suppose that the agent does not
know the forward rate volatility function o (s, T'), although the model that
he uses still belongs to the HJM univariate Markov class of models. The
current yield curve is furthermore observable by all agents in the economy.

The price at any time 0 <t < T of a zero coupon bond maturing at date
T is given by

B(t,T) = exp (— /t ' f(t,s)ds) | ()

We denote by r; the instantaneous rate f(t,t):

rt:f((),t)—ir/o af(s,t)a;(s,t)ds+/0 o (s, )W, (5)

Thus, from (4) and (5), one can show that the process (B(t,T),t < T) solves
the stochastic differential equation

dB(t,T) = nB(t,T)dt —o}(t,T)B(t,T)dWs, (6)
B(T,T) = 1.
In order to simplify calculations, for T¢ < T, we will also introduce the T°°-
forward price B (¢, T) of the bond of maturity 7. This price is defined by a
change of numeraire:

BF (¢,T) := %. (7)

1.2 The pricing of a European call option

We now briefly recall how to compute the no-arbitrage price of a European
option on a zero coupon bond in the absence of model risk and in a complete
market setting. If we denote by T° < T, the maturity of the option, by
K its strike price, and suppose that its payoff at maturity is of the type

4This setting is also valid under P for instance if the local expectations hypothesis
prevails in the economy. See for instance Cox, Ingersoll and Ross (1981).
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#(B(T°,T)), where ¢ is a given function, then it is well known that the
agent can replicate the option by a continuous trading strategy involving
holding HP units of the discount bond of maturity 7° (whose price at time
t <T9is B(t,T°)) and H; units of the discount bond of maturity 7' (whose
price at time t < T is B(t,T)).

Let V; be the value at time ¢ of this self-financing strategy. Then,

Vi = HPB(t,T°) + H,B(t,T)
Let VI be the TC-forward value at time ¢ of the self-financing strategy. Then,

Vi

F ._
Y= B, 70y

— 0P + H,B"(,T). (8)

It can be shown (see Appendix 1) that dV,'" satisfies
av;" =d (HY + H,B"(t,T)) = HdB"(t,T). (9)

In this setting, it is well known that the forward value of the replicating
portfolio is a martingale under the forward risk adjusted probability.

V" =B [¢(B"(T?, T)|F], as., (10)

where EF" stands for the expectation under the forward risk adjusted measure
P defined by’

@ BT "
dP |z, " exp([; redf)B(0,7°)
Under P, the process (W}, 0 <t <T° < T) defined by
t
wrE=w, +/ o5 (0,T°)df
0
is a Brownian motion, and one obtains
dB"(t,T) = B"(t,T)(c%(t, T°) — o3(t, T))dW/". (12)

Suppose now that the function ¢ is smooth, for example of class C2. Given
that the process BY (-, T) is the solution of the stochastic differential equa-
tion (12), a classical result (the Feynman-Kac formula) implies that

V[ =m,,(t, B"(t,T)), (13)

®See Geman, El Karoui and Rochet (1995).
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where the function 7, , solves the following parabolic partial differential equa-

of
tion:
O o * " 2y
— L (t, x) + %332(0'f(t, TO) — Jf(t,T))2WL(t,x) =0,

(14)
Tos (TO7 'T) = ¢(gj)7

with (¢,z) € [0,T79) x R.

The processes (H;) and (HP) can now be expressed in terms of the forward
bond price BY (t,T). Indeed, applying It6’s formula to the right-hand side
of (13) and using (14), one obtains:

on,,

dviF = a—(t, B (t,T))dB* (t,T).
X

Thus, in view of (12), we obtain:

H, = 2o gy, (15)

xz

0
We then deduce from equations (8) and (9) the value of (HP) in terms of
(H,):

t
HP =V +/ HydB" (0,T) — H.B" (t,T). (16)
0

This completely defines the self-financing strategy (Hy, H;).

2 The agent’s hedging strategy under model
risk

In this section, we analyze the model risk associated with the hedging of a
single option within the univariate Markov HJM framework, assuming first
that a real term structure model exists. Secondly, we acknowledge the im-
possible task of defining such a ”true” model and thus rely on a benchmark.
The pairwise comparison between the ”benchmark” and the agent’s ”erro-
neous” models that underpins this analysis covers several practical appli-
cations. Indeed, risk controllers, independent auditors, or regulators often
use a "benchmark” model to gauge the validity of alternative term structure
models used by traders, investors, and more generally, financial institutions
to manage their derivatives positions. We define the benchmark model as
a theoretical model which abstracts from any market errors (such as those

8



associated with noisy price series) and we focus more thoroughly on hedging
rather than on pricing errors stemming from the erroneous model used by
the agent.

More specifically, the agent uses a specific model belonging to the univari-
ate Markov HJM family and characterized by its volatility function (¢, T)
which is not necessarily equal to the ”true” /benchmark volatility function
os(t,T). Note that given the key role played by the volatility specification
in the Heath, Jarrow, Morton framework, ¢(¢,T) jointly accounts for esti-
mation and misspecification risk.

We denote by (HP, H,) a self-financing strategy which perfectly replicates
the option, whereas (HZ, H;) denotes the agent’s strategy. Similarly, (V})
denotes the value of the hedging portfolio, whereas (V;) denotes the value of
the agent’s portfolio. In the absence of model risk, the agent relies on (16)
to determine the quantity HP of discount bonds of maturity 7° needed to
achieve a perfect replicating strategy. Since the true/benchmark model differs
from the agent’s model, it appears (see below) that it is impossible for him
to jointly maintain the perfect replication and the self-financing conditions
of the replicating strategy. In this study, the choice of HC is made in order
to preserve the self-financing property. We thus need to compute HC in the
presence of model risk, ruling out any learning from the trader regarding his
trading strategy.

At each date 0 < t < T, the agent buys or sells discount bonds of maturity
T© and T in order to duplicate the contingent claim. The quantity of bonds
H, of maturity T is determined according to the model he chooses. It is
given by the delta of the option in the univariate Markov HJM model with
a (wrong) volatility specification & ¢(¢,T). In other words, at each time ¢, H,
satisfies:

7 _ O, F
H = — (t, B"(t,T)) (17)

x
where the function 75, solves the following parabolic partial differential equa-
tion (similar to equation (14) with & instead of oy):

oms 1, . ., 0y
Btf (t,x) + §x2(0f(t, T°) —%(t,T))? 5 Lt,x)=0 8)
75, (19, 7) = ¢(x).

with (¢,2) € [0,T79) x R. )
At time 0, the initial value of his “replicating” portfolio is denoted by V.
The value fV, satisfies:

Vi:=HPB(t,T°) + H,B(t,T), (19)




with H, given by (17). By the change of numeraire, the T9-forward value
V.E of the “replicating” portfolio is

t
VE = HY+ BB (1) =V + | HodB"(6.7), (20)
0
Thus, one necessarily has
t
ae =vy +/ HedB"(0,T) — HB"(t,T). (21)
0

We now prove that HP can be expressed without any stochastic integral.
This is an important issue in practice since, in such a case, the amounts
HP and H, can be computed as continuous functionals of the real prices
observed before date t. Indeed, applying Ito’s formula to 75 (¢, B¥(t,T))
and using (17) and (21), we obtain:

Jy HedBF(0,T) = m,,(t, B (t,T)) — 7,,(0, B¥(0,T))

ong
— J3 =2L(0, B (0,T))dd

27"6’
1t 2T g BF(G,T))d < BF (- T) > .

2J0 0922

Since

dB"(t,T) = BT(t,T)o}(t,T)(0}(t,T°) — o}(t,T))dt (22)
+BF(t, T) (0 (t, TC) — o}(t, T))dW.

it follows that
d < B"(-,T) >¢= B"(0,T)*(c5(0,T) — (6, T°))*dt.
Using (18) one therefore obtains®:
HP = V§ —-HB"(t,T)+ns,(t, B (t,T)) — n5,(0, BF(0,T))
t 92
L[ 2o, 570, 7)) B (0, T)

+§ o Ox?
{(6;(07 T) - 6;(07 To))2 - (0;(9, T) - 0;(0, To))2} dg.
(23)

6Note that in practice, to compute H one needs to numerically approximate the inte-
grals on the right-hand side of (23), so that a perfect self-financing strategy is impossible
to achieve. This effect is only due to the choice of a continuous-time modeling framework.
We will come back to this point in section 5.4.
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3 The agent’s Profit and Loss under model
risk

We now characterize the model risk profit and loss function with respect to
the true/benchmark term structure model, and provide an analytic expres-
sion for its decomposition. An important feature of the analysis is that the
forward P&L function can be characterized and evaluated at any given time
between dates 0 and T°. Let us consider the case of an agent who initially
sells and hedges the option. At any time ¢, the agent’s profit and loss under
model risk is the process (P&L;) defined by

P&L; =V, — V.
Similarly, his forward profit and loss is defined by
P&L — —
F._ t _ go @ F
P&L, = BET0) HS — H’+ (H,— H,)B"(t,T). (24)
Relying on (15), (17), we can write:
P&LY = VI + [ Hy dBF(H T) — V¥ — [ HydB" (6, T)
= V& = V& + [3(Hy - Hg)dBF(Q T)
= V=V + fy (520, B7(0.7) - 50, B76,7)) ) dBF (0,7).

(25)

Equation (25) shows the impact of model risk induced delta hedging error on
the forward P&L. We want to simplify (25) and rewrite it without stochastic
integrals. To this aim, let us examine equation (24).

First, we observe that an easy computation similar to the one undertaken
in the preceding section implies that a selffinancing hedging strategy satisfies

HP = —H,B"(t,T) + m,,(t, B"(t,T)). (26)
using that
V)" =m,,(0,B"(0,T))
Thus, combining (23), (24) and (26), one obtains:

P&Ly = Vi —n(0%},0,B5(0,T))
+75, (t, BF(t T)) — 7, (t, B (¢,T))
1 BF(6,T)) BT (9,T)?
{(af(e T) 55(0,T°))2 — (5(6, T) — 05(6, T°))2} de.
(27)
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Equation (27) defines the value of the forward P&L model risk function at
any given date ¢t < T°. This forward P&L decomposition offers an insightful
economic interpretation. Indeed, by looking at the right hand side of equation
(27), we observe that the forward P&L consists of three distinct terms:

e the first term represents the initial ”pricing” error made by the agent.
This term drops out if the agent can sell the option at the price given
by his own HJM model, or if the agent calibrates his model to match
observed market prices.

e the second term represents the model pricing error at any given date
t < T9 chosen to compute the forward P&L. At the maturity of the
option, this term vanishes (see (14) and (18)), since the terminal pay-off
of the contingent claim is model-independent.

e the last term represents the cumulative impact of the model error on
the hedging strategy up to date t. This hedging error depends on
the gamma of the agent (in the "wrong” model) and on the squared
difference between the forward volatility functions in the true and the
"wrong” models.

The above results are fairly general since they apply to any univariate
Markov specification within the class of HJM models. In all cases, we notice
that the model risk P&L is sensitive to the gamma function of the agent and
to the term structure of the forward rate volatilities as specified in both the
benchmark and the agent’s economies.

This decomposition of the model risk P&L allows us to understand the
impact of model risk on an institution’s global P&L, and in particular to
emphasize the importance of cumulative hedging errors, even in the absence
of a (model based) pricing error. Furthermore, this decomposition of the
model risk P&L is an important tool for the risk management of any finan-
cial institution that attempts to validate its term structure models, and to
stress test them with respect to pre-defined benchmark models specified by
the risk controller or by an external regulator. Finally, since the true model
is unknown, this decomposition of the P&L suggests that the ”natural” con-
trol variable that the agent (or regulator) should easily monitor in order to
minimize model risk is the gamma of the hedged position.

12



4 Mathematical analysis of the P&L for spe-
cific term structure models

The objective of this section is to show that for some properties of the con-
tingent claims’ payoff and for some specifications of the functions o} and

*

0%, one can compute the Profit and Loss function or some of its moments
analytically.

4.1 The P&L specification for a smooth payoff contin-
gent claim
Let us consider the case of contingent claims with a smooth payoff function

¢ of the class C*(R). First, one observes that the probabilistic interpretation
of the PDE (18) leads to:

75, (t,x) =B ¢(BE(T°,T)) (28)

where B’ is the expectation under the agent’s forward risk-neutral probabil-
ity measure P defined by substituting B(t,T) to B(t,T) in (11) (thus, P"
is the forward risk adjusted measure for the HJM model corresponding to
a7(t,T))),

P B(t,T°)

dP "~ exp fo 79df)B(0,T°)

(29)

with an obvious definition of (7p) (see (5)). As an example, consider the
hedging of a single option with a smooth payoff in the absence of pricing
errors. It can be shown that in the case of a smooth payoff contingent claim,
the P&L at time T can be re-expressed as follows:

P&Lyo = 2 fo [ BF (1T9,7))
exp (2 ft fTO (0, u)dudW, — ft (fTTo ar(8, u)du)2 d@)}
{(foms0,00)" ~ (faos0.0000)" a0

(30)

The proof is given in Appendix 2.
Furthermore, if this option has a strictly convex payoff, the model risk
P&L at date T can be signed explicitly. It signs depends on the difference

13



between the integral of the benchmark forward rate volatility and the integral
of the agent’s volatility.
At time t = T© equation (30) reduces to

P&LE, = 17729, BF (0, T))BF(H T)?

{(fTo os0.0s)” ([0, 0) o

if we assume that Vg = n(c},0,B7(0,T))). The sign of the forward P&L
depends upon both the over/under estimation of the volatility with respect
to the ”true” /benchmark model and the gamma of the position.

In particular, under a conservative volatility specification:

(/Tz Jf(07u)du)2§ (/Tz af(H,u)du)Q. (32)

the P&L is positive (negative) for a convex (concave) long position. Notice
that in order to limit the model risk of a trader, the only sensible strategy is
once again to set limits on the gamma of the position.

In order to illustrate the previous result, we now provide the details of
the P&L computation in the case of an agent who uses the continuous-time
version of the Ho and Lee (1986) model. That is, for some strictly positive
constant o,

(31)

or(t,T) = &
o (t, T) = o(T —1)
a5(t,T)—a3(t,T°) = &(T -T°).

One can state using (28):

Wﬁf(t,x):EF¢<xeXp<5(T—To) /TO—tG—% 2T — TO) (T —t))>,

where G is a Gaussian random variable of zero mean and unit variance.

It can be shown that when the agent hedges a short position in a European
call option of strike K and maturity 7°, the P&L at date T can be expressed
as

TO

F _ 1
P&L7o = —W( oy o e
(log(K 1ogBF(0 T)+252(T—T9)%(T°-0))?
( 52(T—T0)2(100) ) (33)

( - rop (1 os(0,5005)”) o
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The proof of equation (33) follows in Appendix 3. Notice that

|P&LEo| < ——E—k- (34)
1

2V 275 (T—T©°)
T 2
_20m _ mON2
Vi a*(T —TY) (/TO Jf(H,s)ds)

TO
This is the best possible estimate, since the support of the law of the process
(BY(6,T)) is such that

de.

log(K)—log BF (0,T)+152(T—T°)2(T° —0))?
exp (_( g (K) g262((T7) 02)2(;070)) ( ) )

can take a value which is as close as desired to 1, providing the path of
(BY(6,T)) is chosen accordingly.
Consider now a constant C' > 0 such that:

(T — TO)? — (/Tz o1 (6, s)ds)2

Then, one can infer from (33) that, for a written call option, the absolute
value of the P&L?o on the agent’s hedging strategy admits the following
almost sure upper bound:

<C, P—a.s. (35)

sup
0<6<TO

| Pe&eLfo| < FGELNTD. (36)

The result can easily be generalized to the writing of a put option with the
same exercise price and time to maturity, since both contingent claims have
the same gamma. Obviously, in the case of a long position in a European
call or put option, the agent’s loss in absolute value also becomes bounded
by expression (36).

4.2 Mathematical results for the Ho and Lee strategy
in a Vasicek environment

In order to further illustrate the general results obtained in Section 3, we now
suppose that the agent uses a Ho and Lee model while the true/benchmark
term structure in the economy is actually governed by the Vasicek model.
These two models are chosen since they represent well-known specific cases
of the HJM family of univariate models which can be distinguished by their
volatility specification. For the Ho and Lee model, we have

5'f(t,T) =0y
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while for the Vasicek model, we have:
of(t,T)=o,exp (—k(T — 1))

where o, denotes the constant volatility of the spot rate’.

In this simple case, we can show that the P&L at date T© for the option
seller (buyer) is always strictly positive (negative). In order to prove this
statement, we first substitute the special form of o¢(¢,T") into expression
(33), and the following expression for the model risk P&L at maturity date
T© for the seller of a European call (or a put) on a zero coupon bond follows:

TO
P&Lyo = o -

2v2n(1-1°9) JO /r0_¢
((T —TO)? - % (e**@(H) —~ ef@(TO@))Q) (37)

log(K)—log BF (0,T)+102(T—T°)2(T°-0))?
exp (_( g(K) g2gz((T7);:02)2(7(1076)) ( ) )d@,

where the forward price of the zero coupon bond satisfies:

dBF (t T) o o o o
@b 1) Or ( —r(T—t) _ ,~s(T %)) [_r 1 — e—rTO=y g4 dW} ‘
BF(LT) (6 ¢ Le Jdt + AW
It can easily be shown that, for an agent who has initially sold the option,
the P& Lro is a positive random variable for any level of o, and k. For that
purpose, let us introduce the function f defined by

2
F(0) = K2(T — TO)? — (6%(T70) B 67/@(T076))

This function is positive. Indeed,
FO) = [/{(T — 79— (6%(T70) _ 67/@(T070)):|
[/{(T —T9) + (6(7R(T76)) - e*’“(Tof(’))} :
Since T > T°, we simply have to study the sign of
[/{(T _ 70 - (67»@(T70) - 67/@(T070)):|

or equivalently, the sign of p(z) — p(y), for z = k(T — 0) and y = Kk(T° — 0)
where p(z) = z — e *. Since p(-) is an increasing function and = > y, we
conclude that the quantity in brackets is positive.

By symmetry, notice that a long position in the option leads to a negative

value of P&L;O for all levels of o, and k in all states of the world.

"In the following analysis of model risk, we suppose that there is no estimation risk
(i.e. the estimated value of o, is the same for 6;(¢,7) and o¢(t,T)) and the interest rate
risk premium is still nil.
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5 Numerical illustration for the Ho and Lee
strategy in a Vasicek environment

In this section, we extend the previous analysis by conducting numerical
simulations in the specific case where the agent uses a Ho and Lee model
while the true/benchmark term structure is governed by the Vasicek model.
We provide numerical simulations in order to quantify the magnitude of
model risk on the forward profit and loss, and to analyze its moments and
quantiles as well as the sensitivity of these values with respect to the type
of position chosen by the agent under different term structure shapes. For
illustrative purposes, we consider the P&L at time T, but the analysis can
easily be applied at any given date t < 79, and to any univariate Markov
HJM model’s pairwise comparison.

5.1 Computation of the P&L at the maturity of the
option

We first compute the non-explicit formula for the forward P&L in equation
(37) by numerical approximation. The procedure consists in discretizing in
time the integral on the right-hand side of (37). We therefore suppose that
the agent is indeed able to trade and rebalance his position continuously.

The forward P&L obtained in (37) is a random variable. We are interested
in computing a sample of N different realizations at date T° corresponding
to N states of the world. In each state, we simulate a trajectory of the
forward price BY (t,T") between 0 and T° and we use it to compute the right
hand side of (37). Each simulation i, for ¢ = 1,... , N gives a realization
P& Lz o(i) of the forward Profit and Loss which allows us to compute first
the approximation E(P&Lro) of the expectation E(P&Lyo) :

N
E(P&LE,) = % > P&Ljoli). (38)
=1

Second, the variance Var(P&Lro) is approximated by:
L
Var(P&LE,) = ¥ > (P&LLo(i)? — (B(P&LEo))% (39)
i=1
Finally, in order to compute value-at-risk (VaR) model risk type indicators,
that is, the 1% and 5% quantiles, we invert the empirical cumulative distri-

bution function at the points 0.01 and 0.05 and we will denote by Q(1%) and
Q(5%) the corresponding model risk quantile estimates.
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For the simulations, we have chosen the following set of parameters: the
maturity of the options is respectively equal tol month, 6 month, and 1 year.
The exercise prices are set respectively at K = 90%, 100% and 110% of the
initial value of the zero coupon bond. The maturity of the zero coupon bond
is b years. The initial term structure of interest rates is either flat at a level of
7.5%, or ascending (from 5.5% to 8.3%) or descending (from 8.3% to 5.5%).
The speed reversion parameter x is set to 0.04 in all simulations. The size of
the simulations sample is N = 20'000.

We have chosen to emphasize the impact of the level of o, and the volatil-
ity of the short-term interest rate on the characteristics of the P&L;O. The
latter is intended to provide a ”geographical” perspective of model risk with
respect to low/high interest rate volatilities countries or regions in which in-

terest rate risk exposures are hedged. The volatility parameter varies between
1% (for which P&LL, ~ 0) and 12%.

5.2 Simulation results for a single short option

The results presented in Table 1 and in Figures 1 to 5 are obtained for a short
position on a European call or put option written on a zero coupon bond of
nominal 100. Unless otherwise stated, all the model risk P&L;O statistics
will be expressed relative to the bond market price in order to maintain a
uniform benchmark for the analysis of cash and derivatives positions in terms
of the value of the underlying security.

Figure 1 shows that the interest rate volatility level plays a crucial role
on the various statistics of the P&L;O distribution. For the base case ex-
ample of a 6-month at-the-money put option written on a five-year discount
bond, we observe that the expected forward P&L at time T© is increasing
(decreasing) almost linearly in o, for a short (long) option position, and we
notice furthermore that the P&L;O volatility around the central moment is
also increasing in the short term rate’s volatility. For the maximum level of
the volatility (o, = 12%) displayed, E(P&LE,) represents almost 1% of the
bond’s nominal value.

This value may appear negligible. One should however be aware of the
fact that the value and sensitivity of all P&LE,, statistics are modified when
expressed as a percentage of the underlying put or call market values (see
Figure 2). For instance, in the case of the put option examined in Figure 1,
the expected P&LIT?O expressed as a percentage of the put market price is
decreasing with respect to the short term rate’s volatility. For the minimum
level of the volatility (o, = 1%) displayed, E(P&LE,) represents almost 27%
of the put market value, which is far from being negligible. This suggests
that when analyzing model risk for institutions in terms of their derivatives
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positions only, the importance of the model risk P&LJ*;0 becomes highly
significant because of the implied leverage.

Likewise, the 99% VaR of a single option position is highly sensitive to
the level of the interest rate’s volatility, ranging from 0.15% (for o, = 1%) to
1.5% of the underlying position’s market value (for o, = 12%). Obviously,
the sensitivity of the P&L;O key statistics increases as the maturity of the
option lengthens. The positive concavity of model risk with respect to the
option’s time to maturity increases can easily be inferred from Table 1.

As far as the moneyness of the short put option is concerned, we can
observe from Figures 3 and 4 that the out-of-the money option has always
the lowest expected P&L;O. Furthermore, we see that the impact of model
risk on its hedging is lower than for the at and in-the-money put option,
especially for low interest rate volatility levels. This is confirmed by Figure
5, which shows that while the volatility of the P&L;O is almost linearly
increasing in o, for the in and at-the-money put option, it is an increasing
concave function of ¢, for the out-of-the-money put. Therefore, the results
tend to suggest that in-the-money put or call options are the most sensitive
to model risk, especially in highly volatile interest rate environments.

Finally, the simulations also show that, in the specific case of the Ho
and Lee (trader’s) strategy in a Vasicek (true/benchmark) environment, the
shape of the term structure plays a minor role on the at-the-money put
option’s sensitivity to o,. The expected P&LIT?O and its volatility are nev-
ertheless slightly more pronounced when the term structure of interest rates
is downward sloping. Obviously, the sensitivity of model risk P&LE, with
respect to the shape of the term structure is exacerbated for in-the-money
options, as illustrated in Figure 5.

5.3 Simulation results for option portfolios

The above sensitivity analysis can easily be extended to various option port-
folios. In Figure 6, we look at the P&LIT?O distribution for a six-month long
bear spread and notice first that model risk in this case can lead to both gains
and losses for the trader. This already illustrates the necessity to study the
impact of model risk at the aggregate level. Notice that here, the expected
P&L;O is systematically negative, since we are long the more expensive in-
the-money put. Furthermore, the volatility and quantiles of the P&L;O are
increasing concave functions of o, with a negative skewness (which is due
to the bearishness of the position). For spread-like positions, model risk is
always smaller in absolute value than for a single long position in the con-
tingent claim. This emphasizes the ability of spread positions to provide
"natural” hedging against model as well as interest rate risks.
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The latter statement does not apply to long straddles. It can be seen in
Figure 7 that such a position amplifies the trader’s exposure to model risk
in an additive way. It is furthermore interesting to notice that while a long
straddle position provides limited interest rate risk to its owner, it leads the
agent to support considerable, however bounded, model risk if he uses the
Ho and Lee hedging model in a (true/benchmark) Vasicek term structure
environment.

Thus, a conclusion drawn from this sensitivity analysis is that model risk
does not necessarily map into the intended interest rate risk profile of a trader
or of an institution. The effects of model risk can be quite harmful in a highly
volatile interest rate environment.

This illustrative example has emphasized first of all that model risk is
exacerbated in highly volatile interest rate environments, secondly that the
model risk exposure of an option position does not necessarily mimic its
interest rate exposure, and thus, has to be managed separately. For that
purpose, the most cautious strategy (not necessarily the optimal one) rests
on the monitoring of the aggregate option position’s gamma.

5.4 Simulations of the forward P&L at maturity for a
discretely rebalanced self-financing strategy

In practice, most institutions hedge their positions at discrete time intervals,
for example at the end of the day. With respect to the continuous hedging
problem, discrete rebalancing introduces a discretisation error whose addi-
tional influence should be quantified.

In this section, we simulate a discrete time hedging strategy: the term
structure still evolves in continuous-time according to the Vasicek model,
but the agent acts at discrete times with a self-financing strategy dictated
by his perception of the model of the term structure, that is, a Ho and Lee
model in this example. The terminal forward P&L of the agent will not
correspond to the continuous forward P&L given by equation (33). In most
cases, the P& LE cannot be computed analytically. However, if the interval of
discretization is small, we verify numerically that the discrete P&L converges
towards the continuously rebalanced strategy’s P&L.

Indeed, Figures 8, 9, 10 and 11 obtained for 100 reallocations a day are
very similar to the corresponding Figures in the continuous trading case.
However, we see that if the agent reallocates his portfolio only once a day,
the expected forward P&L is almost unaffected, but its volatility has been
exacerbated and can increase by more than a factor of ten. The quantiles can
become negative, suggesting that unlike in the continuous case, the discretely
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rebalanced position model risk P&L does not remain a strictly positive (or
negative, in the case of long position) random variable.

The above results suggest that the discreteness in portfolio reallocations
magnifies model risk, even for rebalancing time intervals which are commonly
used by practitioners. The next challenge is then to assess the optimal port-
folio reallocation frequency required to manage interest rate and model risks
efficiently.

6 Conclusion

In this study, we explicitly analyze the impact of model risk on the hedging
of single and aggregate discount bond option positions within a unified uni-
variate Markov HJM environment. We have seen that the P&L due to model
risk has a fairly intuitive economic interpretation and that it essentially de-
pends on the magnitude of the position’s gamma and the squared differences
between the forward rate volatility curves in the benchmark and the trader’s
or institution’s environment. Simulations were provided to highlight the fact
that model risk is highly sensitive to the current level of interest rate volatil-
ity, to the type of positions held by the trader (simple versus combined, long
or short, in, at, or out-of-the-money), and that it also increases with the
time to maturity of the position being hedged. Such a comparative statics
exercise should obviously be extended to other univariate Markov interest
rate specifications, especially if the institution actively pursues the goal of
minimizing interest rate model risk on its trading and/or banking book posi-
tions. Given that the ”true” model of the term structure is unknown, while
avoiding volatility gaming strategies, our results suggest that the independent
risk control function should place limits on the position’s gamma in order to
minimize - or manage - the model risk exposure of a financial institution.
There are several ways in which the above study could be extended. First,
we only considered univariate Markov specifications of the HJM term struc-
ture models. It would be interesting to examine the consequences on the
P&L of a situation in which the trader misjudges the number as well as
the specification of the factors driving the evolution of the term structure.
Secondly, we ignored market disruptions and their impact on the resulting
discontinuous evolution of the term structure. In particular, for emerging
markets or countries in which the central bank’s monetary policy interven-
tions play an important role, the jump-diffusion component of the short term
interest rate dynamics and its misspecification or misestimation should also
be examined. Furthermore, issues such as estimation risk, computational
risk and discretization issues also belong to the sound risk management of
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interest rate derivatives’ books. We believe that no term structure model is
universal and should thus be assessed with respect to the liquidity, the com-
petitiveness and the political stability of the country in which an options’
book is being managed. Recent examples in Asia and Russia reinforce the
importance of the country economic, political and legal developments on the
assessment and magnitude of model risk exposure.

It remains to be seen whether there is a non-diversifiable component to
model risk that has to be priced at equilibrium by risk-averse agents. In the
affirmative case, it would be interesting to study the hedging demand for
model risk by risk-averse agents and to propose concrete solutions to allow
for efficient model risk management within financial institutions. Finally, in
light of the absence of a true model of the term structure of interest rates,
it seems natural to extend this study in order to characterize ”optimal”
model risk management strategies for agents (institutions) with different risk
profiles. This question will hopefully deserve greater attention within the risk
management process of financial institutions in light of the pressure stemming
from market competition and regulation.
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Appendix

Appendix 1

In view of Definition (8), one applies Itd’s formula to the product of V;
and of 1/B(t,T°). Thus, under the probability P,

1 Vi
_  JdV, - ——+
B0 T BrTo)

Vi
——— % (t, T9)2dt
B(t,To)Jf( ) ) +
HPa%(t,T°)

B(t,T9)

d‘/;F = Ttdt — U;(t, TO)th)

H,o%(t,T°)
B(t,T°)
d< B(-,T9),W. >, .

+ d < B(-,T),W. >,

where < .,. > denotes the quadratic variation operator.
Then:

e For the first term on the right hand side, one uses the fact that the
portfolio is self-financing,

t t
Vt=Vo+/ H(,OdB(H,TO)Jr/ HydB(6,T)
0 0

which can be written as
dV; = HPdB(t,T°) + HdB(t,T)
B(t, T)(rdt — o(t, T°)dWy) + B(t, T)(rydt — o (t, T)dW,).
e For the second and the third terms, one uses the fact that

Vi = HPB(t,T°) + H,B(t,T)

e For the two last terms, one observes that

d < B(-,T),W.> = —0}(t,T)B(t T)dt,d < B(-,T°),W. >,
= —0}(t,T)B(t, T°)dt.

Finally, one obtains that, under P,
avi" = H,B"(t,T)o}(t,T°)(0}(t,T°) — o5(t,T))dt
+H,B"(t,T)(0}(t,T°) — o}(t,T))dW,
= H.dB"(t,T),

which ends the proof.
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Appendix 2

Under FF, the process (Bf,(+,T)), where the subscript ¢ and 2 indicate
that Bf, (-, T) started with value = at time ¢, is the solution of

B, (6,T) :x+/6 Bl (s, T)(0}(s,T°) — 73(s,T))dW], (40)
t
using
dB"(t,T) = B"(t,T) (65(t, T°) — a5(t,T)) dW .
with
WrE =W, — /t 55(0,T°)d6.
0

For # > t, one obtains

BE®O.T) = wexp (] (7(s,T0) = 7}(s, 1) dWF

1 0 — % O — % 2 (41)
—1 ["(@3(5,T°) = 5%5(s, T)) de).
Thus, given that ¢ is of class C*(R), one obtains
%5 —=F
w(te) = B [GHBLIO.T)
exp <2ft (65(s,T°) — 5(s, T))dWF (42)

—ft (6%5(s,T9) —O'f(S,T))2d8):|

Appendix 3
With the definition of 75, (¢, z), we have

%ﬁ(t,x) = ( Xp(O'T TO)WTO —tG
—% (T —TOPTO 1))
exp (20(T — TO)WWTO —tG — 6*(T — T9)*(T° —1))]
= e (—4) 54
(zexp (6(T —TO)WTO —ty — 15*(T — T?)*(T° — t)))
exp (20(T — TO)WWTO —ty — a*(T — T9)*(T° — 1)) dy,

from which, setting

{:zxexp( (T —T)\TO —ty — 36*(T — T°)*(T° —t))
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and

£(0,6) = st (10g(6) —log(a) + $0°(T = TOP(TO 1),

T-TO)

we obtain:

“+o0

T ta) = e oo (<) eRp0ds @y

0

Thus, substituting in (27) at time t = T° and for V{f" = n(3%,0, B¥(0,T)),
we obtain:

70 [e's)
P&LTO - nns (lT T0) f fo+ %(f) :

\/TO—-6
 (log(¢ 1ogBF(e T)+45%(T—-T°)%(T°-0))2
eXp (T TO)Q(TO 9) )

(02(T 0 = (fro05(0, )ds)2) dedo.

which leads to the P&Lro as defined in equation (33).
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Tables & Figures

Volatility of short term rate (o)

o, = 5% o, = 10%
Maturity of the option (T°) 1M 6M 1Y 1M 6M 1Y
P&LIT?O Expected value 0.19 042 051 037 0.84 1.06
P&LIT?O Volatility 0.07 0.14 0.17 0.13 0.28 0.33
P&LE, Quantile 1% 0.06 0.13 0.16 0.12 0.27 0.36
P& LT, Quantile 99% 031 0.69 083 0.63 1.37 1.68

Table 1: Impact of the option maturity on the P&LJ‘;0 statistics
in the case of a 6-month short at-the-money put option written on

a 5-year zero-coupon bond

The table shows the impact of the option maturity on the P&LE, statis-
tics. The P&:LJFT?0 corresponds to the results from the dynamic hedging of a
short at-the-money put on a 5-year zero-coupon bond. The option maturity
can be 1 month, 6 month or 1 year. The short term rate volatility can be
5% or 10%. The term structure of interest rates is upward sloping from 5.5%
(short term) to 8.3% (15-year and above). All results are expressed as a

percentage of the initial bond price.
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Figure 1: Statistics for P&L?O in the case of a 6-month short ATM
put option on a 5-year zero-coupon bond

The figure shows the impact of the short term interest rate volatility on
the P&LE, statistics. The P&LEL, corresponds to the results from the dy-
namic hedging of a short at-the-money 6-month put on a 5-year zero-coupon
bond. The short term rate volatility varies between 1% and 15%. The term
structure of interest rates is upward sloping from 5.5% (short term) to 8.3%
(15-year and above). The P&LE, statistics are expressed as a percentage of
the initial underlying bond price.
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Figure 2: Statistics for P&L?O in the case of a 6-month short ATM
put option on a 5-year zero-coupon bond (as percentage of the
initial put price)

The figure shows the impact of the short term interest rate volatility on
the P&LE, statistics. The P&LEL, corresponds to the results from the dy-
namic hedging of a short at-the-money 6-month put on a 5-year zero-coupon
bond. The short term rate volatility varies between 1% and 15%. The term
structure of interest rates is upward sloping from 5.5% (short term) to 8.3%
(15-year and above). The P&LE, statistics are expressed as a percentage of
the initial put price.
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Figure 3: Exercise price impact on the expected P&LE, in the case
of a 6-month short put option on a 5-year zero-coupon bond

The figure shows the impact of the short term interest rate volatility
on the expected P&LL,. The P&LE, corresponds to the results from the
dynamic hedging of a short at-the-money 6-month put on a 5-year zero-
coupon bond. Three exercise prices are considered with respect to the initial
bond price: 90%, 100% and 110%. The short term rate volatility varies
between 1% and 15%. The term structure of interest rates is upward sloping
from 5.5% (short term) to 8.3% (15-year and above). The resulting P& LE,
is expressed as a percentage of the initial underlying bond price.
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Figure 4: Exercise price impact on the volatility of the P&LL, in the
case of a 6-month short put option on a 5-year zero-coupon bond

The figure shows the impact of the short term interest rate volatility on

the volatility of P&LE,.

The P&LJ*;0 corresponds to the results from the

dynamic hedging of a short at-the-money 6-month put on a 5-year zero-
coupon bond. Three exercise prices are considered with respect to the initial
bond price: 90%, 100% and 110%. The short term rate volatility varies
between 1% and 15%. The term structure of interest rates is upward sloping

from 5.5% (short term) to 8.3% (15-year and above).
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Figure 5: Impact of the shape of the term structure and of the
exercise price on the P&L?O volatility of the in the case of a 6-
month short put option written on a 5-year zero-coupon bond

The figure shows the impact of the short term interest rate volatility on
the volatility of the P&LEY,. The P&LE, corresponds to the results from
the dynamic hedging of a short at-the-money 6-month put on a 5-year zero-
coupon bond. Different exercise prices are considered with respect to the
initial bond price (90%, 100% and 110%), as well as different term structure
shapes (upward sloping, downward sloping, flat). The upward sloping term
structure of interest rates goes from 5.5% (short term) to 8.3% (15-year and
above). The downward sloping term structure of interest rates goes from
8.3% (short term) to 5.5% (15-year and above). The flat term structure is
at 7.5%. The short term rate volatility varies between 1% and 15%.

34



08% 7 pglL statistics

0.6% - I

0.4%

0.2%

0.0%

Short-term interest rate volatility

3% 4% 5% 6% 7% 8% 9% 10%

11%

12%

02% 4

-0.4% A

-0.6%
—E(P&L)

-0.8% —o— E(P&L)+Vol(P&L)

—o— E(P&L)-Vol(P&L)

-1.0% A

------ Q(1%)
------ Q(99%)

-1.2% -

Figure 6: P&LE, statistics in the case of a 6-month long bear-spread
on a 5-year zero-coupon bond

The figure shows the impact of the short term interest rate volatility
on the expected value and on the quantiles of the P&LL,. The P&LE,
corresponds to the results from the dynamic hedging of a 6-month bear-
spread position on a 5H-year zero-coupon bond. The spread exercise prices
are set at 90% and 100% of the initial bond price. The short term rate
volatility varies between 1% and 15%. The term structure of interest rates
is upward sloping from 5.5% (short term) to 8.3% (15-year and above). The
P&LE, statistics are expressed as a percentage of the initial bond price.
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Figure 7: P&LE, statistics for a 6-month long at-the-money straddle
on a 5-year zero-coupon bond

The figure shows the impact of the short term interest rate volatility
on the P&LL, statistics. The P&LZL, corresponds to the results from the
dynamic hedging of a 6-month long at-the-money straddle position on a 5-
year zero-coupon bond. The straddle exercise prices equals the initial bond
price. The short term rate volatility varies between 1% and 15%. The term
structure of interest rates is upward sloping from 5.5% (short term) to 8.3%
(15-year and above). The P&LE, statistics are expressed as a percentage of
the initial bond price.
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Figure 8: Expected P&L%,in the case of discrete rebalancing
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The figure shows the impact of the short term rate volatility on the ex-
pected P&L?O in the case of a discrete trading strategy. We consider two
possible reallocation frequency: 100 times a day, or once a day. The P&LE,
corresponds to the results from the dynamic hedging of a short at-the-money
6-month put on a 5-year zero-coupon bond. The short term rate volatility
varies between 1% and 11%. The term structure of interest rates is flat at
7.5%. The expected P&L?O is expressed as a percentage of the initial bond

price.
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Figure 9: Volatility of the P&LZL, in the case of discrete rebalancing

The figure shows the impact of the short term rate volatility on the P& L%,
volatility in the case of a discrete trading strategy. We consider two possible
reallocation frequency: 100 times a day, or once a day. The P&LE, cor-
responds to the results from the dynamic hedging of a short at-the-money
6-month put on a 5-year zero-coupon bond. The short term rate volatility
varies between 1% and 11%. The term structure of interest rates is flat at
7.5%. The P&Ll;0 volatility is expressed as a percentage of the initial bond
price.
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95% quantiles of the P<§<:L]*[T70 in the case of discrete rebal-

The figure shows the impact of the short term rate volatility on the P&LZL,
95% quantiles in the case of a discrete trading strategy. We consider two
possible reallocation frequency: 100 times a day, or once a day. The P&LE,
corresponds to the results from the dynamic hedging of a short at-the-money
6-month put on a 5-year zero-coupon bond. The short term rate volatility
varies between 1% and 11%. The term structure of interest rates is flat at
7.5%. The quantiles are expressed as a percentage of the initial bond price.
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Figure 11: 99% quantiles of the P& LY, in the case of discrete rebal-
ancing

The figure shows the impact of the short term rate volatility on the P&LZL,
99% quantiles in the case of a discrete trading strategy. We consider two
possible reallocation frequency: 100 times a day, or once a day. The P&LE,
corresponds to the results from the dynamic hedging of a short at-the-money
6-month put on a 5-year zero-coupon bond. The short term rate volatility
varies between 1% and 11%. The term structure of interest rates is flat at
7.5%. The quantiles are expressed as a percentage of the initial bond price.
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