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Abstract

In April 2001 Swiss banks held over CHF 500 billion in mortgages. This important segment
accounts for about 63% of all the loan portfolios of Swiss banks. In this paper we restrict
our attention to residential mortgages held by private clients, i.e. borrowers who finance their
property by the loan and we model the probability distribution of the number of defaults
using a non-parametric intensity based approach. We consider the time-to-default and, by
conditioning on a set of predictors for the default event, we obtain a log-additive model for the
conditional intensity process of the time-to-default, where the contribution of each predictor
is described by a smooth function. We estimate the model by using a local scoring algorithm
coming from the generalized additive model.

1 Introduction

A mortgage is a lien or claim against a real estate property given by the borrower to the lender
(usually the bank) as a security for money borrowed. In other words a mortgage is a loan collat-
eralized by real estate, which obligate the borrower to make a series of payments of interest and
principal.
In April 2001 Swiss banks held over CHF 500 billion in mortgages. This important segment
accounts for about 22% of all the assets and about 63% of all loan portfolios of Swiss banks1.

∗The author wishes to thank Vlatka Komaric of Credit Suisse Group for providing the data set used in this
work and Jürg Burkhard and Urs Wolf of Credit Suisse Group for the support and the interesting discussions.
I’m grateful to Uwe Schmock and to seminar participants at RiskLab, UBS AG and University of Lausanne for
suggestions and remarks. Research of the author was financially supported by Credit Suisse Group, UBS AG and
Swiss Re through RiskLab, Switzerland.

1Source: Swiss National Bank, ”Statistisches Monatsheft”, May 2001, available from the website of the Swiss
National Bank, http://www.snb.ch.
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Moreover, the market value of all real estate in Switzerland has been estimated at between CHF
2,300 billion and CHF 2,800 billion (see Credit Suisse Group (2000)), more than twice as much as
the market capitalization of the companies listed in the Swiss Performance Index. Nevertheless,
not much research has been done in this area so far and the estate market is characterized by the
limited amount of information available to investors.
In 2000 47% of the overall Swiss property estate was purely residential buildings, while the remain-
ing 53% is dived between commercial buildings (12%), offices, administrative and public buildings
(14%), industrial, retail and commercial premises (14%) and other properties (agricultural, hotel,
catering) (13%). Moreover, about 86.5% of Swiss properties are owned by private individuals and
only 13.5% by insurance companies, pension funds, real estate companies or real estate funds (see
Credit Suisse Group (2000), Chapter 1, for more details on the Swiss real estate market).
The percentages reported above give an idea about the importance of the market of private res-
idential mortgages, i.e. residential mortgages held by private individuals, whose purpose is to
finance their own real estate by the loan. We want to address our attention to this particular
sector, for which some traditional approaches for modeling credit risk, as for example the firm’s
value approach of Merton, are not appropriate. Moreover the credit quality of private clients is
usually determined by the issue of the mortgage and a new evaluation is made only when interest
payments are delinquent for some period, and thus when the credit quality of the borrower has
already deteriorated, even if a default has not occurred. The lack of specific information about
each single counterpart in a residential mortgage portfolio, has to be considered for modeling the
credit risk.

Portfolio managers dealing with big portfolios of residential mortgages are responsible for main-
taining adequate reserves to cover future losses that may occur on outstanding mortgages. The
credit risk associated with mortgage portfolios is essentially the risk that borrowers will default
and fail to meet interest rate payments on the outstanding balance (the default risk) and the risk
that given a default, the collateral value of the defaulted mortgage (i.e. the minimum between
the current house value and the face value of the mortgage’s note) is less then the outstanding
balance plus unpaid interest.
In the literature different explanatory variables for a default in a mortgage contract has been
identified. Smith, Sanchez, and Lawrence (1999) and Deng (1995) select mortgage and economic
characteristics for predicting default and for calculating the probability of incurring a loss on a de-
faulted loan. Deng (1995), Santos Silva and Murteira (2000) use borrower characteristics, such as
the payment-income ratio, which is usually only observable by the issue of the mortgage. Follian,
Huang, and Ondrich (1999) include in their model duration, location, demographic and economic
variables as covariates to explain default. The contingent claim approach, which is considered
by Kau and Keenan (1998), treats default as a rational decision, such that a default occurs if
the house value (equity value) falls below the value of the mortgage. This approach considers
a ”strategic” mortgage default as a put option on the mortgage itself, i.e. the option of selling
back the house to the lender in exchange for eliminating the mortgage obligation. The behaviour
of private individuals, whose purpose is to finance their property with the loan, is, however, not
always rational in the sense of the economic theory. Deng and Quigley (2000) propose combining
the financial value of the put option in the contingent claim framework, with non-option related
variables, such as unemployment or divorce rates.

For our study, we consider quarterly observation of a big Swiss residential mortgage portfolio from
1994 to 2000, selecting a sub-portfolio of only private clients with a one-family house financed
by the loan, divided in 26 economic and geographical regions across Switzerland (26 cantons).
Analyzing our data set, which has the advantage of containing observations during the economic
recession of the 90’s, we deduce that a mortgage default is usually triggered by numerous personal



An Intensity Based Non-Parametric Default Model for Residential Mortgage Portfolios 3

“non-financial” reasons, more than by a rational economic decision (see also Deng and Quigley
(2000)). One common cause for default is unemployment; another is divorce. In the case of unem-
ployment the income of the borrower can dramatically decrease and the consequence will be the
inability to pay the interest on the outstanding balance. Therefore, considering a big portfolio,
we conclude that the number of defaults, as well as the loss amount, is correlated to the economic
environment, i.e. to economic factors such as unemployment and interest rates, or to social and
demographic developments, such as the increase of the number of divorces observed in Switzerland
in the last 10 years. Normally, there is a lag of one, two or more years between a macro-economic
or social event and an increase in the number of defaults. This time lag can be explained by
the fact that borrowers with economic difficulties will often use own savings to pay the interest
before defaulting: this behaviour is quite typical for private clients, in contrast to corporate clients.

Before introducing our approach, we give some insight into the problem we treat in this work.
We consider a simple fixed rate and fixed maturity mortgage contract between two parties, B
and C. Party B (the bank) lends money to party C (the client), with a fixed interest rate r
and maturity τ . In return party C gives B a guarantee covered by a collateral, i.e. the property
financed by the loan. The value of the coverage has an upper bound v, deterministic and inde-
pendent of the house value over the time, as stipulated in the mortgage contract by the issue of
the mortgage. The bank fixes maximal coverage by v and this amount is usually greater than the
initial outstanding balance. As already stated above, B is faced with essentially two risks: the
risk that C will not be able to pay periodical interests (i.e. he defaults) and the risk that the
collateral given as a guarantee will fall in value and be worth less than the outstanding balance
at the time of default plus additional unpaid interests. Suppose that (Bt)t∈{0,··· ,τ} is a process
denoting the outstanding balance of party B at time t = 0, . . . , τ . Bt denotes the outstanding
principal plus unpaid interest; B0 represents the money lent to party C at the beginning of the
contract. (Vt)t∈{0,··· ,τ} is a stochastic process giving the value of the collateral at time t (selling
value, realized value).
Given a default at time T , the loss function L depends essentially on BT and VT . According to
the mortgage contract, the bank can realize min(VT , v) and the loss at time T is thus given by

LT = [BT − min(VT , v)]+ . (1)

This last equation suggests that LT is positive if and only if BT > min(VT , v). This means that
a default causes a loss if and only if the collateral represents insufficient coverage, and in a big
portfolio this is only a small percentage of all mortgages defaulted on.
For a big portfolio is thus the total number of defaults and the dependence between default events
and the value of the collateral which can be relevant for risk management purposes. Moreover,
as stated above, the number of defaults is related to the economic environment, as well as to the
house price, and specific economic scenarios can thus imply major losses.

Looking at equation (1), we conclude that the loss function depends on three random variables:
the default time, the outstanding balance and the value of the collateral at default. A static model,
characterized by a fixed time horizon, will not capture the behaviour of the default process under
different scenarios. The observation that default is usually triggered by specific macro-economical,
social or personal conditions, makes a static approach inappropriate, since the behaviour of the
obligors under different conditions will not be taken into consideration.
We propose an intensity based approach for modeling the time to default, which we take to be the
first-jump-time of an inhomogenous Poisson process with stochastic intensity, also called doubly
stochastic Poisson or Cox Process. The main idea consists in conditioning on a set of explaining
variables, which affect the borrowers’ behaviour, and to consider borrower defaults as independent
given this set of information about the economic environment. This hypothesis has some empirical
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relevance for private individuals. The intensity process is directly related to the explaining vari-
able, as in a proportional hazard rate (PHR) model of Cox and Oakes (1984), but in our model the
relationship is not assumed to be log-linear as in a PHR model. We simply assume some smooth,
perhaps non-linear, relationship.
The goal is to model the dependence structure of a mortgage credit portfolio through a common
scenario and, by applying the conditioning technique, to obtain computational advantages. In
Section 2 the default event is defined. Section 3 introduces the model. Section 4 is devoted to
the estimation methodology. Section 5 presents our results and Section 6 concludes our proposal.
Technical results are given in the appendix.

2 Mortgages Default

Let (Ω,G, P) be a probability space. Let P = {(di, vi, Bi, Vi, ri), i = 1, . . . , n} be a portfolio of
n mortgages outstanding during some period after time t0 (we just eliminate from P mortgages
defaulting in t0). For mortgage i, di denotes the time of issue, vi the maximal coverage stipulated
in the mortgage contract, Bi = (Bi,t)t≥di is a process giving the outstanding balance at time t,
Vi = (Vi,t)t≥di is a stochastic process giving the house value at time t and ri = (ri,t)t≥di is a
process (stochastic or deterministic) giving the interest rate applied to mortgage i at each time t.
We suppose that a mortgage portfolio is totally characterized by P . Each mortgage in P either
has been issued before t0 (di < t0) or after t0 (di ≥ t0). In the first case, the mortgage is not
observed from the start of the contract but only after t0. In the sequel we use alternately and with
the same meaning the words “mortgage” and “obligor”, the latter indicating private individuals
borrowing money under a mortgage agreement.

We divide the time interval [t0,∞) in sub-intervals (tl, tl+1], l ∈ N of the same length. Each
interval (tl, tl+1] represents one year, one quarter or one month respectively and each time tl,
l ∈ N represents the discrete points in time where an interest payment on the mortgage is due.
The length |tl+1 − tl| is set to be the time unit, meaning that |tl+1 − tl| = 1. Let T = {tl | l ∈ N}.
At each time tl ∈ T the obligor may be punctual and make an interest and/or principal payment or
he may repay the loan in its entirety. A default is observed when the interest payment due at time
tl ∈ T is delinquent over a period of fixed length (usually 90 days) after tl and the loan has not
be repaid at time tl (see Figure 1). We suppose that the observation of a default is right-censored
and we define the default time as follows.

Definition 2.1 (Default). An obligor is said to default at time T ∈ [t0,∞) if he loses the ability
to make the next interest payment at time t = min{t ∈ T : t ≥ T } and to repay the outstanding
balance before t or at time t. T = ∞ means that a default will not occur, i.e. the observation of
the default time is left-censored by a repayment.

�

tl−1 tl tl+1

fixed lenght

T observation

Figure 1: Time to default T and observation of T .
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This definition seems to be quite complex, but it will be very useful for modeling the time-to-
default, since we can assume that time-to-default is a continuous variable and a default can thus
occur at any time t and not only at discreet points in time where the interest payment is due.

Let Ti : Ω −→ [t0,∞) be a positive random variable giving the time of default for obligor i,
i = 1, . . . , n. Under our assumptions on P we have P

[
Ti = t0

]
= 0. Moreover P

[
Ti > t

]
> 0,

∀t > t0. The default indicator is a stochastic process defined by Xi = 1{Ti≤t} for t ≥ t0. We
define the default indicator process for each t ≥ t0 independently from di. If di > t0 then Xi will
be identical to zero on [t0, di]. We denote the loss function of the portfolio P by L = (Lt)t≥t0 ,
where Lt : Ω −→ R+ is given thought

Lt =
n∑

i=1

Xi,t [Bi,t − min(Vi,t, vi)]
+

. (2)

Naturally, the portfolio manager is interested in the difference between Ltl+1 − Ltl
giving the

specific reserve to be accumulated for period (tl, tl+1] to face to new losses. This difference can be
negative, meaning that some specific reserve can be relaxed. A defaulted mortgage will remain in
the portfolio for some period after default, meaning that a defaulted mortgage will not be treated
as a definitively closed position. During the period a defaulted mortgage remains outstanding, the
credit recovery department of the bank tries to recover the outstanding balance, by liquidating
the property given as a guarantee.

3 Model for the default probability

We restrict our attention to the problem of modeling the default probability. We consider the
portfolio P introduced in the previous section, as well as the times of default T1, . . . , Tn.
We denote by Fi = (Fi,t)t≥t0 the flow of information available for obligor i, i = 1, . . . , n, at
each time t ≥ t0. With Di = (Di,t)t≥t0 we denote the natural filtration of the default indi-
cator process Xi for obligor i, i.e. Di,t = σ(Xi,s : s ≤ t). Moreover, Gi = (Gi,t)t≥t0 , where
Gi,t = Di,t ∨Fi,t ≡ σ (Di,t ∪ Fi,t) denotes the enlarged σ-algebra, giving all the information about
the predictors and default indicator at each time t ≥ t0, for obligor i.

Following Jeanblanc and Rutkowski (2000), for t ≥ t0 we define the conditional intensity pro-
cess of the time to default Ti given Fi as follows.

Definition 3.1 (Conditional intensity process). The conditional intensity process of the time
to default Ti given Fi is the nonnegative, Fi-predictable process λFi

i such that the stochastic process
Mi = (Mi,t)t≥t0 defined by

Mi,t = Xi,t −
∫ t∧Ti

t0

λFi

i,u du (3)

is a Gi-martingale.

This is the martingale characterization of the intensity process, sometimes called the pre-
intensity process (Duffie and Gàrlenau 1999). We suppose that for all i = 1, . . . , n the conditional
intensity process λFi

i exists. Appendix A gives more details on the technical conditions we need
for the existence. By application of the martingale property, of the Lebesque averaging theorem
and the Lebesque dominated-convergence theorem successively, we obtain

lim
s↘0

P
[
Ti ∈ (t, t + s] |Gi,t

]
s

= 1{Ti>t}λ
Fi

i,t . (4)
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This last equation suggests that the conditional intensity process at time t, λFi

i,t, corresponds to the
“classical” intensity on {Ti > t}. On the set {Ti ≤ t} the “classical” intensity will be just identical
to zero, since the probability for a default will be zero if a default has already occurred (default
is considered as an absorbing state). Moreover, this equivalence gives us a useful and practical
interpretation of the conditional intensity process λFi

i . On the set {Ti > t} and for ∆t 
 1, λFi

i,t∆t
gives the conditional probability that a default occurs during (t, t + ∆t] conditioned on all the
information Gi,t available up to time t.

Some technical results used in the sequel are given in Appendix A. The Corollary of Lemma
A.1 applied on T = Ti, Gt = Gi,t and Ft = Fi,t for i = 1, . . . , n, implies that

P
[
Ti ∈ (t, t + s] |Gi,t

]
= 1{Ti>t}

P
[
Ti ∈ (t, t + s] |Fi,t

]
P
[
Ti > t |Fi,t

] . (5)

Dividing by s and taking the limit s ↘ 0 it follows that on {Ti > t}

λFi

i,t =
fi(t |Fi,t)
Si(t |Fi,t)

,

where fi(t |Fi,t) = lims↘0
1
sP
[
T ∈ (t, t + s] |Fi,t

]
is the conditional density function of Ti and

Si(t |Fi,t) is the conditional survival function. The conditional density function fi(. |Fi,t) exists if
the conditional intensity process λFi

i exists.

The goal is to model the conditional intensity. Before proceeding we note that the survival function
can be written as a function of the intensity process, as follows for t ≥ t0

Si(t |Fi,t) = exp

(
−
∫ t∨di

t0∨di

λF
i

i,udu

)

which implies that λFi

i,t = fi(t |Fi,t)
Si(t |Fi,t)

also holds on {Ti ≤ t}.

We now consider the portfolio P . Mortgage defaults are triggered by some obligors specific
or by mortgage-specific or by external, environment-specific factors. We suppose that we find a
set of predictors for the default event of obligor i. Mathematically, we have a multi-dimensional
stochastic process Yi = (Yi,1, . . . , Yi,p), such that each component Yi,q (q = 1, . . . , p) represents an
explaining factor for the event of default of obligor i, as for example the regional unemployment
rate or the regional divorce rate. The history up to time t of the predictors gives the additional
flow of information available at time t. Thus we can assume that the filtration Fi introduced
before, is the natural filtration of Yi, i.e. Fi,t = σ(Yi,s : s ≤ t).
We model the intensity process as follows. We suppose that we can find real valued strictly positive,
measurable functions hi,0, . . . , hi,p, and a strictly positive constant λi,0 such that for t ≥ di

λFi

i,t = λi,0hi,0(t − di)
p∏

1=1

hi,q(Yi,q(t)). (6)

We assume that hi,0(0) �= 0. This assumption prevents the conditional intensity from being iden-
tical to zero at time di. Without loss of generality we suppose that for all i, hi,0(0) = 1.2 We write

2We can still define h̃i,0 by h̃i,0 =
hi,0

hi,0(0)
and λ̃i,0 = λi,0hi,0(0)
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λFi

i,t = λFi

i,t(θ̃i;Yi,t) where θ̃i = (λi,0, hi,0, hi,1, . . . , hi,q) is the parameter to be estimated. The use
of the tilde will be clear later, when we apply the logarithm to equation (6) to obtain an additive
form. We introduce additional conditions on θ̃i in the sequel.

Equation (6) suggests the following interpretation. The functions hi,1, . . . , hi,p give the sensi-
tivity of obligor i to the predictors Yi,1, . . . , Yi,q. hi,0 is the so-called base-line intensity function
and gives the contribution of the duration t − di (life time of the mortgage) to the conditional
intensity process; λi,0 is a ”time-invariant intensity”.
The model explains the following behaviour of the conditional intensity. We suppose that, at
the beginning of the mortage agreement, an expected intensity λi,0 can be associated to obligor
i. If the obligor’s behaviour is not affected by any predictors Yi,1, . . . , Yi,p, then we expect no
contribution to the intensity process to be given by Yi, meaning that hi,q ≡ 1, for q = 1, . . . , p.
If moreover the duration contribute nothing to the intensity process, then hi,0 ≡ 1 and the con-
ditional intensity process is reduced to a constant λi,0 (this would imply a Poisson process with
constant intensity). That the reason why we call λi,0 a “time-invariant intensity”.
Usually, we observe that obligor’s behaviour changes during the life of the mortgage, meaning that
the probability of incurring a default increases or decreases. Some factor Yi,q (mortgage specific,
obligor’s specific or depending on the macro-economic environment) affects the ability of obligor
i to pay the interest rate on the mortgage, changing stochastically the default intensity. Equation
(6) says that predictors Yi and the duration t− di affect the realization of λFi

i in a multiplicative
way, as explained by the functions hi,q, for q = 0, . . . , p.

When a rating system exists, we can assume that the credit quality of an obligor is captured
by his rating: credit quality in our framework means exactly the ability to pay the interest rate,
as well as the ability to pay back the outstanding balance. The credit quality of an obligor will,
in addition, capture the ability to react to specific scenarios, i.e. to the specific realization of
predictors Yi. In our model this is described by the functions hi,q, for q = 0, . . . , p as well as
by the constant λi,0, which gives an expected intensity at time di. Therefore, if a rating system
exists, the parameter θ̃i will be identical for each obligor with the same rating. We will use this
intuition for the estimation of our model.
If no rating system exists, then equation (6) suggests a methodology to create one. We can select
a family of predictors, which are significant for describing the credit quality of the obligor and
can then estimate the model under the assumption that obligors are identical, i.e. all the θ̃i are
the same. For the time di the realization of the conditional intensity can be computed for each
obligor, given realization yi,di of the predictors. Following the realized values for λFi

i,di
obligors can

then be grouped and a rating system can be defined.

For the estimation of the model it is useful to consider the logarithm of the conditional inten-
sity, which is given by an additive form, as follows

ηFi

i,t(θ̃i;Yi,t) = log λFi

i,t(θ̃i;Yi,t) = log λi,0 + log hi,0(t − di) +
p∑

q=1

log hi,q(Yi,q(t)). (7)

For the sake of simplicity, we introduce the parameter θi = (log λi,0, log hi,0, . . . , hi,p) which is
obtained by a log-transformation of the components of θ̃i. In the sequel we only consider the pa-
rameter θi and thus write λFi

i,t(θi;Yi,t) instead of λFi

i,t(θ̃i;Yi,t). The same for ηFi

i,t(θ̃i;Yi,t). Without
loss of generality we suppose that E

[
log hq(Yi,q(t)

]
= 0 for each t ≥ t0, each q = 1, . . . p, i = 1, . . . n

(we can still define h̃q such that log h̃q(Yi,q(t)) = log hq(Yi,q(t))−E
[
log hq(Yi,q(t))

]
for q = 1, . . . , p

and log h̃0(t − di) = log h̃0(t − di) +
∑p

q=1 E
[
log hq(Yi,q(t))

]
).
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Moreover, we assume that obligors who default up to time t are conditionally independent given
the history of the predictors up to time t. This assumption seems reasonable for the kind of
portfolio we are considering in this work, i.e. a portfolio of private individuals (for companies this
assumptions would not be realistic). In fact the conditional independence implies that, given a
scenario through the predictors, obligor defaults occur independently, meaning that the depen-
dence structure is fully described by the common scenario.

For estimation purposes we now want to introduce a homogeneous group of obligors. We de-
fine K classes of obligors, where the functional form of the model is identical for all obligors of
a given class. In other words, we suppose that obligors can be grouped in K classes, such that
the θi’s are the same for all obligors in the same class. If two obligors belong to the same class,
then the sensitivity of the conditional intensity to the explaining factors will be the same and the
only reason for their exertion of two different realization of the conditional intensity, is because
the predictors realization are different. As remarked above, if a rating system exists, then we can
identify the K classes with the rating categories. For each class k = 1, . . . , K only one parameter
θi has to be estimate.
Moreover, we form J groups of obligors where the predictors Yi and the duration t− di are iden-
tical. If we use only macro-economic predictors, the groups represent regional groups of obligors
with same duration. We can also group the obligors following other criteria, as intervals where the
ratio Bi,t

Li,t
, called the loan-to-value ratio, or the interest rate ri,t, have some specific values (Kau

and Keenan 1998).

4 Estimation methodology

We fix a time horizon τ = tm, tm ∈ T . We have [t0, τ ] = {t0} ∪
(⋃m−1

l=0 (tl, tl+1]
)
, tl ∈ T ,

l = 0, . . . , m. Our observation is made over [0, τ ]. Defaults times are denoted by T1, . . . , Tn as
before. If a default is observed, i.e. Ti ≤ τ , then the contribution of the observation to the
conditional likelihood function is fi(Ti; θi |Fi,Ti). Otherwise the observation is right-censored by
τ , or by a repayment of the mortgage at time ci ∈ [0, τ ] (in this case Ti = ∞ by definition): the
contribution to the conditional likelihood function is given by Si(ci ∧ τ ; θi |Fi,ci∧τ ). Since obligor
defaults are conditionally independent, the conditional likelihood function is thus given by

L =
∏

Ti≤τ

fi(Ti; θi |Fi,Ti)
∏

Ti>τ

Si(ci ∧ τ ; θi |Fi,ci∧τ ) (8)

=
∏

Ti≤τ

(
λFi

i,Ti
(θi;Yi,Ti)Si(Ti; θi |Fi,Ti)

) ∏
Ti>τ

Si(ci ∧ τ ; θi |Fi,ci∧τ ). (9)

Our observations are both right- and left-censored, in the sense that the exact time Ti, where the
inability to pay the interest appears, is unobserved. We only know that Ti ∈ (tl, tl+1] for some l,
meaning that a payment has been made at time tl but not at time tl+1 for some l. We rewrite
the likelihood function taking this characteristic of our observation into consideration. If obligor i
defaults during the time interval (tl, tl+1] then the contribution to the likelihood function will be
Si(tl; θi |Fi,tl

)− Si(tl+1; θi |Fi,tl+1), meaning that he survives time tl but not time tl+1. If obligor
i survives the time horizon τ or a repayment occurs at time ci ∈ [t0, τ ], then the observation of
the time-to-default is right-censored and the contribution to the conditional likelihood function
will be Si(ci ∧ τ ; θi |Fi,ci∧τ ). The conditional likelihood is given as follows

L =
m−1∏
l=0

∏
Ti∈(tl,tl+1]

(
Si(tl; θi |Fi,tl

) − Si(tl+1; θi |Fi,tl+1)
) ∏

Ti>τ

Si(ci ∧ τ ; θi |Fi,ci∧τ ). (10)
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This likelihood function is very hard to handle analytically since each factor is given by an
exponential function or by a difference of exponential functions of the integral of the conditional
intensity process. Moreover, we lose some information about the number of obligors surviving time
tl for each tl ∈ T . This kind of information would be very useful for estimating the “sensitivity”
of obligors’ behaviour with respect to some specific realized predictors. In fact, not only defaults
but also survivals will provide information on the behaviour of obligors under specific conditions
or specific realization of the predictors. If we just consider obligors who survive time τ , or repay
the mortgages before τ , through Si(ci ∧ τ ; θi |Fi,ci∧τ ), then information about single periods are
lost, which should be avoided since we already have a dearth of information.
Looking at equation (6) we observe that the intensity at time t depends on the history Fi,t of
the predictors only through the last realized value Yi,t. It follows that we can simply consider
each time period (tl, tl+1], l = 0, . . . , m − 1 separately. Moreover, obligor defaults up to time t
are assumed to be conditionally independent given Fi,t, and thus we suggest that our consider-
ation of the conditional likelihood function can be restricted to each rating class k = 1, . . . , K
separately. In fact the conditional independence implies that one rating class will not contribute
to the maximum-likelihood estimation of the parameters for another rating class. Note that the
θi’s are the same for all obligors in the given class under our assumptions; for the sake of sim-
plicity, in the sequel we consider one class k = 1, . . . , K and thus drop the index i: we write
θ = (log λ0, log h0, log h1, . . . , log hp) and λFi instead of λFi

i .
We divide the obligors in J groups as introduced in the previous section. Each group is homo-
geneous with respect to the predictors, as well as the duration t − di. By Dj,l we denote the
number of mortgages in group j defaulting during (tl, tl+1] and by Oj,l the number of mortgages
outstanding in group j (at risk) during this period (j = 1, . . . , J). The probability that obligor i
in group j defaults during (tl, tl+1], given that he survive time tl and given the predictors up to
time tl, is given by equation (5) for t = tl, s = tl+1 − tl. On the set {Ti > tl} we have

P
[
Ti ∈ (tl, tl+1] |Gi,tl

]
=

P
[
Ti ∈ (tl, tl+1] |Fj,tl

]
P
[
Ti > tl |Fj,tl

]
=

S(tl |Fj,tl
) − P

[
Ti > tl+1 |Fj,tl

]
S(tl |Fj,tl

)
.

Under our assumptions, Fi = Fj for obligor i in group j. Using

P
[
Ti > tl+1 |Fj,tl

]
= S(tl |Fj,tl

) E
[
exp

(
−
∫ tl+1∨dj

tl∨dj

λFj
u (θ;Yj,u)du

)
|Fj,tl

]
we obtain that, on {Ti > tl}, for mortgage i in group j, it follows

P
[
Ti ∈ (tl, tl+1] |Gi,tl

]
= 1 − E

[
exp
(
−
∫ tl+1

tl

λFj
u (θ;Yj,u)du

)
|Fj,tl

]
. (11)

The typology of our data set makes it necessary to discretize the intensity process, as well the
process describing the set of predictors. With yj = (yj,t)t∈[t0,τ ] we denote the realized vector of
predictors for obligors in group j = 1, . . . , J . We suppose that the predictors are constant on each
interval [tl, tl+1) and that the function h0 is piecewise constant on [tl, tl+1). We have that, on
{Ti > t}, the conditional probability is given by

P
[
Ti ∈ (tl, tl+1] |Gi,tl

]
= 1 − exp

(
− 1

tl+1 − tl
λ

Fj

tl
(θ;yj,tl

)
)

= uj,l(θ). (12)

Therefore, uj,l(θ) denotes the conditional probability that a default occurs during (tl, tl+1] given
that the mortgage survives time tl and given the realization at time tl of the predictors for obligors
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in group j. The number of defaults in a group j is thus binomial distributed with conditional
probability uj,l(θ). The contribution of period (tl, tl+1] to the conditional discretized likelihood
function is thus given by

Ll(θ) =
J∏

j=1

(
Oj,l

Dj,l

)
uj,l(θ)Dj,l (1 − uj,l(θ))

Oj,l .

The total conditional discretized likelihood function follows directly using the independence be-
tween successive periods, we have:

L(θ) =
m−1∏
l=0

Ll(θ) =
m−1∏
l=0

J∏
j=1

(
Oj,l

Dj,l

)
uj,l(θ)Dj,l (1 − uj,l(θ))

Oj,l . (13)

The conditional total likelihood function given by equation (13) is simply the likelihood function
of mJ independent observations, which are all binomial but not identically distributed, since
the probability uj,l(θ) changes, as well as the parameter Oj,l of the distribution. Moreover if
we consider the definition of uj,l(θ) we can express uj,l(θ) as a function of the additive form
η

Fj

tl
(θ;yj,tl

) given by equation (7), i.e.

η
Fj

tl
(θ;yj,tl

) = log λ0 + log h0(tl − dj) +
p∑

q=1

log hq(yq(tl)).

For this purpose we define the function G : (0, 1) → R, x �→ log(− log(1 − x)), the so called
complementary log log-function; we have:

G(uj,l(θ)) = η
Fj

tl
(θ;yj,tl

) = log λ0 + log h0(tl − dj) +
p∑

q=1

log hq(yq(tl)). (14)

In this last equation the convention introduced before, namely that tl+1−tl = 1, for l = 0, . . . , m−1
is used explicitly.

4.1 Reformulation of the model as GAM

Combining equations (13) and (14) we suggest a reformulation of the model for the number of
defaults as a generalized additive model (GAM). An overview of GAM and some technical results
are given in Appendix B. More details can be found in Hastie and Tibshirani (1990).
For l = 0, . . . , m − 1 and j = 1, . . . , J we define the conditionally independent random variables
vj,l as the ratio Dj,l

Oj,l
. We suppose that vj,l ∼ 1

Oj,l
binomial(Oj,l, uj,l(θ)) conditionally on uj,l(θ),

where uj,l(θ) is defined by equation (12). The observation (vj,l)j,l has the conditional likelihood
function L(θ) as given by equation (13). Moreover, E

[
vj,l |Yj,tl

= yj,tl

]
= uj,l(θ) and uj,l(θ) is

related to an additive form as shown above (equation (14)).
Let α = log λ0, fq = log hq for q = 0, . . . , p. Resuming, we obtain the following problem. Estimates
θ = (α, f0, . . . , fp), given conditionally independent observations vj,l and observed predictors yj,tl

for l = 0, . . . , m − 1, j = 1, . . . , J such that

vj,l ∼ 1
Oj,l

binomial(Oj,l, uj,l(θ)), (15)

G(uj,l(θ)) = α + f0(tl − dj) +
p∑

q=1

fq(yj,tl
). (16)
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For the sake of simplicity, we drop the index j, l and write ṽ = (v1,1, v1,2, . . . , vJ,m−1, vJ,m)′ ∈ RM

and ỹ(l−1) J+j = (tl − dj ,y′
j,l)

′ ∈ Rp+1, for l = 1, . . . , m, j = 1, . . . , J , such that (ṽi, ỹi) represents
a pair of observations (i = 1, . . . , M).
By reformulating of the problem as a GAM, we see that it is possible to maximize the likelihood
function L(θ) and to find the maximum likelihood estimation of θ using the technique developed
for estimating a GAM, i.e. using a local scoring algorithm with backfitting (see Appendix B).
This procedure is implemented in standard software packages, as, for example, S-Plus. Details on
the S-Plus implementation can be found in Chambers and Hastie (1992).

4.2 Model selection

We consider the GAM introduced in the previous section (equations (15) and (16)). The main
goal is to identify the functional form of the model by a nonparametric technique. The fitted func-
tion will serve as a diagnostic tool to inspire parsimonious reparametrizations of some variables,
using log transformation, inverse transformation or polynomials. An accurate deviance test can
be performed on the transformed model, but it is nevertheless very useful to find a model selection
procedure within the GAM framework.
We have to estimate the parameter α as well as the functions f0, . . . , fp. For this purpose the
local scoring algorithm (see Appendix B) approximates in the backfitting loop each function fq,
q = 0, . . . , p by using a weighted smoothing operator Sλq

q , where λq denotes the smoothing factor
(see Appendix B and C for technical details) for the qth term. In this work we use smoothing
splines, which are also introduced in Appendix C. Other classes of smooth operators are available,
such as weighted locally regression, Gaussian kernel regression or B-splines.

Restricting the choice of the weighted smoothing operators to the class of weighted smoothing
splines Cspline = {f̂λ | f̂λ smoothing spline with smoothing factor λ ≥ 0} we can address the
question of which term has to be included in the model and also how smooth it has to be.
We follow the model selection technique proposed by Hastie and Tibshirani (1990, Section 9.4.1).
A discussion on smoothing factor selection for smoothing splines is given in Appendix C, as well as
the definition of effective degrees of freedom for a smoothing spline. Here, we extend the smooth-
ing factor selection procedure to the GAM.

We refer to the local scoring algorithm introduced in Appendix B. By Sλq
q we denote the smooth-

ing operator applied to the qth term (q = 0, . . . , p) and by W the weighted least square operator
for the constant α, at convergence of the local scoring algorithm (the last step). Since we are
dealing with smoothing spline estimations (which are linear), we need only to consider Sλq

q as the
smooting matrix for the qth term. Let f̂q (we drop the index λ for the moment, see Appendix C)
be the smoothing spline estimation of fq and f̂q = (f̂q(ỹ1,q), . . . , f̂q(ỹM,q))′. We have

α̂

f̂0
...
f̂p

 =


W(z −

∑p
q=0 f̂q)

Sλ0
0 (z −

∑
q �=0 f̂q)

...
Sλp

p (z −
∑

q �=p f̂q)

 . (17)

At convergence, we can thus write the estimation of the additive form η̂ = (η̂(ỹ1), . . . , η̂(ỹM ))′,
η̂(ỹi) = α̂ +

∑p
q=0 f̂q,i (i = 1, . . . , M), as η̂ = Rλz, where Rλ is the weighted additive-fit operator

and z is the adjusted variable by the final step of the local scoring algorithm. λ = (λ0, . . . , λp)′

is the vector of smoothing factors. Analogously, as with smoothing splines, the total number of
effective degrees of freedom of the model is defined by

dfλ = tr(Rλ). (18)
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The number of degrees of freedom for the error term is defined by

df err
λ = M − tr

[
2Rλ − (Rλ)′ARλA−1

]
, (19)

where A is the weight given by the expected information matrix in the last step (at convergence)
of the local scoring algorithm (see Appendix B for more details).
In the backfitting loop of the local scoring algorithm each function fq, q = 0, . . . , p is fitted by a
smoothing spline. As we discuss in Appendix C the number of effective degrees of freedom for the
spline estimation of the qth term has to be selected. In Appendix C we show that the number of
effective degrees of freedom, defined by the trace of the smoothing matrix, uniquely determines
the smoothing factor λ, since the relationship between smoothing factor and the effective number
of degrees of freedom is strictly monotone.

In the GAM framework we define the effective number of degrees of freedom for the spline es-
timation of the qth term by

dfλq
q = tr(Sλq

q ) − 1. (20)

We subtract the 1 since in the GAM the constant is isolated.

We define the set Θq ⊂ Cspline giving the different value for the effective number of degrees of
freedom df

λq
q which are allowed for the spline estimation of fq (q = 0, . . . , p): Θq contains alterna-

tives of increasing complexity for the choice of the number of degrees of freedom for the q-th term.
One can, for example, give the alternatives df

λq
q = 0, df

λq
q = 1, df

λq
q = 3 and df

λq
q = 5 for the

smoothing spline estimation of the qth term: degree of freedom df
λq
q = 0 for example means that

the q-th term is deleted from the model, df
λq
q = 1 means that fq is forced to be linear (the least

square line usually has two degrees of freedom, but for the GAM we subtract 1 since the constant
is isolated). We assume that, for each q, the qth term can be deleted from the model, i.e. 0 ∈ Θq

for q = 0, . . . , p. We set the model space Θ = R+ ×
(⊗p

q=0 Θq

)
and we define the null model or

initial model by θ̂0 = (α̂0, 0, . . . , 0) ∈ M. This is to say that the conditional intensity process at
the beginning is simple assumed to be constant and α̂0 is the least square estimation of α. Before
we introduce the model selection technique, we have to define a criterion for comparing the fit of
different models. Following Hastie and Tibshirani (1990) we use the χ2-test and the AIC criterion.

Let ṽ ∈ RM and ỹi ∈ Rp+1, i = 1, . . . , M as defined in the previous section. θ̂ ∈ Θ denotes
the estimation of θ obtained by the local scoring procedure, where the smoothing spline estima-
tion of the qth term is an element of Θq for each q = 0, . . . , p.
µ̂ ∈ RM is defined by µ̂(l−1)J+j = G−1(ηFj

j,l(θ̂;yj,tl
)), l = 1, . . . , m, j = 1, . . . , J , where η

Fj

tl
(θ̂;yj,tl

)
is given by equation (7) for θ̂ and G is the link function as defined in the previous section. With
l(θ) = logL(θ) we denote the log-likelihood function. The likelihood-ratio statistic for θ̂, also called
deviance, is defined by

D(θ; ṽ) = 2
{
l(θmax; ṽ) − l(θ̂; ṽ)

}
(21)

where θmax = arg maxθ l(θ; v̂). Considering the product form of the likelihood function L(θ) (see
equation (13) and Appendix B for the general case where the observations follows an exponential
family density), one can rewrite the deviance as

D(θ; ṽ) =
M∑
i=1

D(µ̂i; ṽi), (22)
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where µ̂i is defined for i = 1, . . . , M as above. According to Hastie and Tibshirani (1990) the
χ2-distribution is a quite useful approximation of the distribution of the deviance, although the
deviance is not χ2-distributed. In fact bootstrap simulations suggest that this approximation
is informative under some assumptions (see McCullagh and Nelder (1995), Chapter 4.4.3 for a
discussion on generalized linear model with binomial distribution). The deviance function is more
directly useful for comparing two nested models.
Let θ̂1 and θ̂2 be two models in Θ, which differ only by a single term (not the constant): we
suppose that θ̂1 is the smaller model, meaning that for one specific q = 0, . . . , p the function fq is
simply forced to be identical to 0 in the model θ̂1 but not in the model θ̂2 (θ̂1 and θ̂2 are called
nested models). We want to test the null hypothesis H0 : θ = θ̂1, with respect to the alternative
HA : θ = θ̂2. For the binomial distribution (for which the dispersion parameter φ is equal to 1,
see Appendix B), the asymptotic distribution of the difference

D(θ̂2; θ̂1, ṽ) = D(θ̂1; ṽ) − D(θ̂2; ṽ) (23)

is approximated by a χ2-distribution with df err
q = df err(θ̂1) − df err(θ̂2) degrees of freedom, under

the null hypothesis H0 (i.e. the effect fq of the q-the variable is absent). df err(θ̂1), df err(θ̂2), are
the numbers of degrees of freedom for the error in model 1 and model 2, respectively (see equation
(19)). The exact values for df err(θ̂i) (i = 1, 2) are quite difficult to obtain. A useful approxima-
tion for the difference df err

q is given by df
λq
q = tr(Sλq

q ) − 1, where Sλq
q , as above, is the matrix

representing the linear smoothing operator (smoothing spline) for fq (see Hastie and Tibshirani
(1990, Chapters 5 and 6) and Hastie and Tibshirani (1987)). The same idea can be applied to
test linearity in one term - say the q-th term - or to test an increase of complexity in exactly one
term. For additive models, Cantoni and Hastie (2000) have proposed exact statistics for testing
the null hypothesis H0 that the number of degrees of freedom for the q-th term in the model is
equal to dfq, against the alternative HA that it is bigger, while the other terms are forced to be
identical in both models.

In addition to the analysis of deviance presented above, we use another criterion for compar-
ing two models. Let Vi be a random variable with the same distribution as the realization ṽi,
i = 1, . . . , M (it is a binomial distribution, see equation (15)). The prediction error (PE) for the
model θ̂ ∈ Θ is given by

PE =
1
M

E
[ M∑

i=1

D(µ̂i; Vi)
]

(24)

where µ̂i (i = 1, . . . , M) is defined above. We introduce the AIC statistic

AIC =
1
M

D(θ̂; ṽ) + 2dfθ̂

1
M

, (25)

where dfθ̂ is the effective number of degrees of freedom for the model θ̂, as defined by equation
(18), and there Rλ denotes the weighted smoothing operator corresponding to the model θ̂. The
AIC statistic is asymptotically unbiased for the prediction error PE (Ishiguro, Kitagawa, and
Sakamoto 1986).
The smoothing factor selection also involves the AIC statistics. As for the smoothing factor
selection technique implemented by smoothing spline (see Appendix C), we consider the cross-
validated deviance

CV =
1
M

M∑
i=1

D(µ̂−i
i , ṽi), (26)
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where µ̂−i
i denotes the fitted value for µi, leaving the ith data point out of the sample. Minimizing

CV with respect to smoothing factors λ = (λ0, . . . , λp)′ is computationally expensive, since each
trial λ needs the calculation of D(µ̂−i

i , ṽi), for i = 1, . . . , M , and thus the local scoring algorithm
has to be run M times. We extend the consideration done in Appendix C for smoothing splines
and define the generalized cross-validation GCV by

GCV =
1
M

∑M
i=1 D(µ̂i; ṽi)

(1 − 1
M dfθ̂)

2
. (27)

Using that for x ≈ 0 we have (1 − x)−2 ≈ 1 + 2x, and that 1
M dfθ̂ is small for M big enough, we

obtain

GCV ≈ 1
M

M∑
i=1

D(µ̂i; ṽi) + 2dfθ̂

1
M

1
M

M∑
i=1

D(µ̂i; ṽi) (28)

and thus GCV and AIC are equal to first order.

Model selection technique

To compare the fit of two models we use the AIC statistic defined by equation (25). We start with
the null model θ̂0. The AIC statistic for the null-model is computed using equation (25). The
first step of the model selection is the following. For q = 0, . . . , p, the model θ̂1,q ∈ Θ is obtained
by increasing the complexity of the q-th term in θ̂0 one step forward in Θq, while the other terms
q′ �= q are kept fixed equal to zero. The estimation of the model θ̂1,q is given by the local scoring
algorithm, and AICθ̂1,q is computed. Between the p + 1 models generated by this first step, the
model θ̂1 ∈ Θ, which is defined by

θ̂1 = arg min
{
AICθ̂1,q | θ̂1,q : q = 0, . . . , p

}
(29)

is selected if and only if AICθ̂1 < AICθ̂0 . In the case where AICθ̂1 ≥ AICθ̂0 , the model AICθ̂0 is
the best model (with respect to the selection criterion) and the model selection procedure stops.
The general steps from one model θ̂r ∈ Θ, r = 1, . . . to the next model θ̂r+1 ∈ Θ is the following.

(i) For q = 0, 1, . . . , p define the model θ̂r+1,q
+ by increasing the complexity of the qth term in

θ̂r one step forward in Θq , while the other q′ �= q are kept fix.

(ii) For q = 0, 1, . . . , p, if the qth term in not identical to 0 in θ̂r, define the model θ̂r+1,q
− by

decreasing the complexity of the qth term in θ̂r one step backward in Θq, while the other
q′ �= q are kept fix. If the qth term in θ̂r is identical to 0, θ̂r+1,q

− = θ̂r .

(iii) Define
θ̂r+1 = arg min

{
AICθ̂1,q

+
, AICθ̂1,q

−
| θ̂r+1,q

+ , θ̂r+1,q
− : q = 0, . . . , p

}
. (30)

(iv) If AICθ̂r+1 < AICθ̂r , select the model θ̂r+1 and continue the selection procedure, otherwise
select the model θ̂r and stop the selection procedure.
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5 The data

We estimate the default model (6) by applying the GAM reformulation given in Section 4 in equa-
tions (15) and (16).
Our Swiss portfolio P contains 73683 mortgages held by private clients for some period between
January 1994 and December 20003. We consider only first-mortgages, which we selected form the
available data. The portfolio is observed at the end of each quarter (March 31, June 30, September
30, December 31), as well as the default process for each obligor. Only mortgages which we were
able to observe at least two subsequent points in time were selected (this means that selected
mortgages were outstanding for more then three months). This restriction is necessary to identify
a default which occurred during a given quarter, since one has to make sure that the defaulted
mortgage was at risk at beginning of the quarter (and not already defaulted) and thus observed
at end of the last quarter. We denote by Q1.94, Q2.94,. . . , Q3.00, Q4.00 the end of each quarter
between 1994 and 2000. The portfolio P is thus observed at time Q1.94, Q2.94,. . . , Q3.00, Q4.00:
the observations of P at time Q3.94 and Q3.95 fail. Using the notation introduced in the previous
sections, we define t0=Q1.94, t1=Q2.94, t2=Q3.94, etc. t28=Q4.00. No information about the
time of issue di of a mortgage i is available for our analysis (i = 1, . . . , 73683). Instead we assume
that di = t0 for each mortgage and thus h0 in equation (6) is independent of di.
In addition, our data set contains information about the mortgage product (adjusted-rate mort-
gage or fixed-rate mortgage) and the mortgage interest rate valid for the last quarter, for each
quarter and for each obligor. Obligor belong to 26 different political and economic regions across
Switzerland. Each region has its own regional government and regional laws, apart from the fed-
eral, central government, so that a difference in the political environment can be observed (see
Credit Suisse Group (2000) on the real estate market characteristics in the different economic
regions). In the existing rating system obligors are divided either in higher credit quality, “Rating
A” or a lower credit quality, “Rating B”.
Figure 2 gives the structure of our data set. Besides the observation of defaults, the data set
also contains observations of repayments, even if they cannot be identified with certainty, since a
mortgage can disappear from the portfolio for reasons other than repayment.
In the sequel we enumerate the predictors Yi,q, q = 1, . . . , p, which we select for our model.

Time
The function h0 depends on the time t − di, since the issue of the mortgage. We assume that
di = t0 for all the obligors (i = 1, . . . , 73683). The time t − di should capture seasonality in the
data set (Jegadeesh and Ju 2000) and thus we also verify whether there is some contribution to
the conditional intensity of that quarter of the year to which the observation corresponds, i.e.
Q1,. . . ,Q4. We define the variable Y0 independent of obligor i by Y0(tl) = k, if tl corresponds to
the k-th quarter of the year (i.e. tl has the form Qk.xx).
The exact age of the mortgage would have more impact on the value of the recovery rate, as shown
for example by Smith, Sanchez, and Lawrence (1999).

Regional quarterly unemployment rate
One of the common reasons for private clients failing to pay the interest rates on the mortgage
is unemployment. Naturally, it is not possible to define an indicator of unemployment for each
obligor, so we use a regional variable, the regional quarterly unemployment rate, provided by the
Swiss Federal Statistical Office. For each region we test lags of one up to 16 quarters (4 years).
We define the quarterly unemployment rate in region w (for w = 1, . . . , 26) by Yw,1 and the lagged
rate by Y

(r)
w,1, i.e. Y

(r)
w,1(t) = Yw,1(t − r) for r = 1, . . . , 16 (time units is a quarter). We expect the

3Our data set represents a sub-portfolio provided by Credit Suisse Group.
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Figure 2: Data set with mortgage defaults (D) and mortgage repayments (RP).

lagged variables to be more significant for explaining the default process and that the function h1

in the model increases, meaning that a high quarterly unemployment rate (1 up to 16 quarters
before the quarter we are looking at) will imply a higher default rate.

Regional yearly divorce rate
Another quite significant cause for default seems to be divorce. As an indicator for divorce, we
use the yearly regional divorce rate provided by the Swiss Federal Statistical Office. It gives the
percentage of divorces during one year. The rate is assumed to be constant over the year. Instead
of considering the rate itself we take the yearly absolute change of the rate for each region and lags
of 1 to 4 years. If by divw,2(t) we denote the regional yearly divorce rate in region w = 1, . . . , 26
at time t and we define Yw,2 by

Yw,2(t) = divw,2(t) − divw,2(t − 4).

By Y
(r)
w,1 we denote the lagged predictor, i.e. Y

(r)
w,1(t) = Yw,1(t− 4r) for r = 1, . . . , 4 (time unit is a

quarter). We also expect the lagged rate for divorce to be more significant. Since changes of the
divorce rates over the last 10 years are not extreme, we expect the contribution of this variable to
the default intensity to be small or absent.

Mortgage product
Our portfolio P contains adjusted-rate mortgages, as well as fixed-rate mortgages. The first type
is characterized by a variable interest rate and maturity: neither is fixed in the mortgage contract.
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The mortgage interest rate follows a reference market interest rate, although with a time lag, and
is subject to politics. The obligor can repay the outstanding balance at each time and prepayment
is free from additional transition costs. The second type of mortgage product is characterized
by a fixed interest rate and maturity: both are fixed in the mortgage contract. An obligor is
protected from increases in the interest rate but cannot profit from a future cut in interest rate.
A prepayment of the mortgage is costly.
We code the mortgage product of obligor i (i = 1, . . . , 73683) by a 0-1 variable Yi,3 where

Yi,3(t) =
{

0 if adjusted rate mortgage,
1 if fixed rate mortgage. (31)

We expect the contribution of mortgage product to the intensity process to be higher for adjusted-
rate mortgages.

Mortgage interest rate
Default is defined an an obligor being unable to meet the interest payment on his mortgage (see
the definition in Section 2). For a fixed-rate mortgage the interest rate does not change during
the life of the mortgage and the obligor does not have to face with an increase of the quarterly
payment. This is not true for adjusted-rate mortgages. If the quarterly mortgage interest rate
increases, then the quarterly charge for the obligor increases too. (ri,t)t≥di denotes the interest
rate applied at time t on the outstanding balance of obligor i (i = 1, . . . , 73683). We consider the
relative change xi,t of the interest rate with respect to the previous quarter, i.e. for each quarter
t = tl ∈ T we have

xi,t =
ri,t − ri,t−1

ri,t
. (32)

Since the value of xi,t differs from zero for only a low percentage of the mortgages in our data
set, we group obligors with the criterion that xi,t belongs to given intervals. This means that our
predictor Yi,4 based on the interest rate is defined by levels, as follows

Yi,4(t) =


1 if xi,t < 0,
2 if xi,t = 0,
k + 1 if xi,t ∈ (ak−1, ak], k = 2, . . . , K,
K + 2 if xi,t > aK ,

(33)

where a1 = 0 and (ak)k=1,...,K is a strictly increasing sequence. We use K = 3, a2 = 0.25, a3 = 0.5.
Moreover this definition is very useful for grouping obligors if their predictors are identical.

5.1 Results

Considering our predictors Yq (we now drop the index i), q = 0, 1, . . . , 4, Y
(r)
1 , r = 1, . . . , 16, Y

(r)
2 ,

r = 1, . . . , 4 and their realizations, we obtain, for each rating class, J = 260 groups of obligors (26
regions, 2 mortgage types, 5 intervals for the interest rate), where their predictors are identical on
each time interval (tl, tl+1]. Since we are considering 25 time intervals (tl, tl+1], each one quarter
long, the total number of realizations of Dj,l and Oj,l that we observe is 6500. For A-rated obligors,
only M = 3265 observations of Oj,l are different from zero; for B-rated obligors we have M = 2713
non-zero observations of Oj,l. We estimate the models for the intensity process of each rating class
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separately, as stated in the previous sections. The general model has the form

G(uj,l(θ)) = α + f0(tl) + f
(q)
0 (y0(tl)) +

16∑
r=1

f
(r)
1 (y(r)

j,1 (tl)) +

+
4∑

i=1

f
(r)
2 (y(r)

j,2 (tl)) + f3(yj,3(tl)) + f4(yj,4(tl)),

where yj,q(tl) and y
(r)
j,q (tl) again denote as the realizations of the predictors at time tl, in group j

(y0 depends only on the time tl and thus we drop the index j).
We apply the model selection technique introduced in the previous section to our data set, starting
with the null model for both rating classes. Table 1 shows the estimated values for the constant
α, the residual deviance, effective number of degrees of freedom and the AIC statistic (multiplied
with the number of observations M) for the two models. For both rating classes we select the

Rating α̂0 Residual deviance dfθ̂0 M ∗ AICθ̂0

A -9.379 322.023 1 324.023
B -6.298 1380.706 1 1382.706

Table 1: Null model estimates.

variables to be included in the model following the criterion on the χ2-test introduced in the
previous section, with a confidence level of 1%. The variable Y

(r)
1 for r = 8, 9, 11, 14, 15, Y3 and

Y4 has been selected for A-rated obligors; and Y0, Y
(r)
1 for r = 7, 8, 9, 11, Y3 and Y4 for B-rated

obligors.
We define the model set Θ by allowing the smoothing spline estimation of the function f

(r)
1 (for

r = 1, . . . , 16) to have up to 20 effective degrees of freedom, which implies a lot of variability.
The choice of the maximal effective number of degrees of freedom is arbitrary: we want to ensure
that the complexity of the model can be increased as long as the AIC criterion allows it, since
the number of observations is big enough. The smoothing spline estimation of the function f3 has
maximal 1 degree of freedom, since the variable Y3 takes only two values (it is a (0,1)-variable).
For the spline estimation of the function f4 we restrict the choice to maximal 3 degrees of freedom
(only 5 distinct values). Finally, we allow for the smoothing spline estimation of the function f0

to have up to 15 effective degrees of freedom and the smoothing spline estimation of f
(q)
0 to have

maximal 3 degrees.
Starting with θ̂0 we apply the model selection procedure based on the AIC-statistic, which we
introduced in the previous section. The following model has been selected for the higher rated
class , A:

G(uj,l(θ̂A)) = α̂A + f̂
(11)
1,A (y(11)

j,1 (tl)) +
(
β̂3,A 1{yj,3(tl)=1} + γ̂3,A

)
+ f̂4,A(yj,4(tl)). (34)

For the lower rated class, B, we have:

G(uj,l(θ̂B)) = α̂B + f̂
(q)
0,B(y0(tl)) + f̂

(8)
1,B(y(8)

j,1 (tl)) +
(
β̂3,B 1{yj,3(tl)=1} + γ̂3,B

)
+ f̂4,B(yj,4(tl)). (35)

Table 2 gives the residual deviance, the effective number of degrees of freedom and the AIC-
statistics for both models. The estimated parametric components of the two models are presented
in Table 3, together with standard error and approximated 95%-confidence intervals, which cor-
respond to ±2× times the standard error. The point estimates of α indicate that the expected
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probability of default for A-rated obligors is less then for B-rated obligors. This suggests that the
rating system is consistent and has predictor power. Looking at the point estimates of β̂3,. and
γ̂3,. we deduce that the default rate of A-rated and B-rated obligors is smaller - 74% and %84
respectively - than the default rate of adjusted-rate mortgages if we keep other factors constant.
For A-rated obligors the point estimates are less significant. It follows that a default is more likely
to occur on adjusted-rate mortgages. The same behaviour (but with smaller differences in per-
centage) has been found in Smith, Sanchez, and Lawrence (1999), Table 1. This can be intuitively
explained by the fact that fixed-rate mortgages are not influenced by an increase of the interest
rate. Moreover, defaults are more likely to be observed for adjusted-rate mortgages, since the
term of a fixed-rate mortgage is usually 2-5 years in Switzerland and a default will generally not
occur immediately following the issue of the mortgage contract, or during the first 12-18 months.
In fact the bank tends to sell adjusted-rate mortgages to obligors with lower credit quality, since
the mortgage contract is easier to set up.

Rating Residual deviance dfθ̂ M ∗ AICθ̂

A 273.635 6.98 287.595
B 1082.055 9.89 1101.851

Table 2: Model estimation

Rating
α̂ β̂3 γ̂3

Estimate -9.9108 -1.3568 0.6740
A Standard error 0.7752 0.4443 0.2207

Approx. 95% CI -11.4612 -2.2454 0.2326
-8.3604 -0.4682 1.1154

Estimate -6.8644 -1.7893 0.8462
B Standard error 0.3636 0.1690 0.0799

Approx. 95% CI -6.1372 -2.1273 0.6864
-7.5916 -1.4513 1.006

Table 3: Model parameter estimates, with standard error and approximated 95% CI.

Figures 3-7 give the smoothing spline estimates f̂
(11)
1,A , f̂4,A, f̂

(q)
0,B, f̂

(8)
1,B and f̂4,B. The model

selection procedure selects a small number of degrees of freedom for each function, meaning that
more complexity in the model will not significantly decrease the deviance (see the model selection
procedure). The approximated 95% confidence intervals are also given. We observe that the
confidence band is larger near the bounds of our observation sets. This can be explained by the
small number of extreme realization of the predictors.
The quarter of the year to which the observation corresponds, contributes only to the intensity
process of B-rated obligors. The second and specially the last quarter of the year present the most
important contributions. These results reflect in part the common experience within the bank: in
fact a high number of defaults is usually observed at the end of the year.
Unemployment affects the ability to pay the interest rate for both rating classes. The default
rate of A-rated obligors increases significantly for extreme realization of the unemployment rate:
a positive contribution is observed for a rate higher than 6%. For B-obligors an increase is almost
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Figure 3: Spline estimation f̂
(11)
1,A with 1 degree of freedom. Dotted lines give the 95% approximated

confidence interval.

linear and a positive contribution is already observed for a rate higher than 4%. A-rated obligors
seem to be less affected by unemployment: nevertheless, the default rate changes dramatically
if the unemployment rate reaches high levels. B-rated obligors are also more sensitive to lower
unemployment rates. The model suggests that higher rated obligors are more likely to remain
current under a “normal” scenario then B-rated obligors, but they will also be affected by stress
scenarios. Moreover, we observe that the rate is lagged three quarters more for A-rated obligors
than for B-rated obligors.
The percentage change of the interest rate also contributes significantly to the default intensity.
For A-rated obligors the contribution becomes important if the relative change in the interest rate
over one quarter is higher than 25% (level 3), which implies an increase of the interest payment
of the same amount. If changes are lower, the contribution seems to be less important. This
suggests that the ability to pay the interest rate is strong and will be affected only under stress
scenarios. This behaviour is expected for obligors with higher credit quality. For B-rated obligors
a big difference of the contribution of this predictor to the conditional intensity process is observed
between level 1 (decrease) and level 2 or higher (interest rate remains unchanged or increases).

The estimated models serve to generate the distribution function of the number of defaults for
each rating class and the whole portfolio. Under the assumption that defaults are conditionally
independent and that, given the specific realization of the predictors, the number of defaults
follows a binomial distribution, we simulate the probability distribution function for each rating
class under given scenarios, as the sum of conditionally independent binomial distributions, with
probability uj,l(θ̂), given by the inverse G−1 of the link function, applied to the additive forms
(34) and (35).
To illustrate this point we present a simple simulation result. We consider a portfolio P ′ with
100000 obligors. We assume that obligors in P ′ are distributed among the 26 regions and the 2
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Figure 4: Spline estimation f̂4,A with 2 degrees of freedom. Dotted lines give the approximated
95% confidence interval.
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Figure 5: Spline estimation f̂
(q)
0,B with 2 degrees of freedom. Dotted lines give the approximated

95% confidence interval.
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Figure 6: Spline estimation f̂
(8)
1,B with 1 degree of freedom. Dotted lines give the approximated

95% confidence interval.
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Figure 7: Spline estimation f̂4,B with 1.9 degrees of freedom. Dotted lines give the approximated
95% confidence interval.
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two mortgage products, in the same way as in portfolio P at the end of the last quarter 2000.
We simulate the distribution function of the number of defaults in P ′ for the first quarter of 2001
under two different scenarios regarding the interest rate. The first scenario (scenario 1) supposes
an interest rate increases of 0.75 percentage points for all outstanding adjusted-rate mortgages
at the end of the last quarter 2000. The second scenario (scenario 2) supposes a decrease of the
interest rate of 0.5 percentage points for all the outstanding adjusted-rate mortgages at the end
of the last quarter 2000. The lag in the unemployment rate used in our model (8 and 11 quarters,
respectively) are taken from our observation of Y

(r)
w,1 (r = 8, 11, w = 1, . . . , 26) up to December

2000.
Our assumptions on the interest rate are simplistic. Other scenarios for the mortgage interest
rate can be generated, following, for example, the model proposed by Burger (1998, Chapter 4).
Moreover, one can naturally suppose that an increase or a decrease of the interest rate will not
involve all the outstanding adjusted-rate mortgages, but only a few or in different ways. Under
complex scenarios the implementation technique of our default model will, in any case, not change.
Figure 8 gives the conditional distribution functions for the total number of defaults in portfolio
P ′ during the first quarter 2001, under the two different scenarios for the interest rate given above.
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Figure 8: Conditional distribution function for the total number of defaults in portfolio P ′ under
scenario 1 (left histogram) and scenario 2 (right histogram). We have computed 1000 simulations
of the total number of defaults.

6 Conclusion

In this work we have presented an approach for modeling the distribution function of the number
of defaults for a residential mortgage portfolio. We have considered the time-to-default and the
associated conditional intensity process, given a set of predictors for the default event. The model
is very flexible with respect to the choice of the predictors. We have used macro-economic vari-
ables, such as the unemployment rate, mortgage specific variables, interest rates and the mortgage
product and obligor specific characteristics, such as the region where he lives. We estimate the
model by using a non-parametric technique, stemming from generalized additive models and we
use smoothing splines to estimate the relationship between predictors and the conditional default
intensity.
Our approach offers a dynamical framework to model the default risk and therefore to better cap-
ture the sensitivity of private individuals to different scenarios. The model allows other predictors
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which are relevant for the default process to be used and suggests that other information about
single obligor is needed, to better capture the sensitivity of each obligor to some scenario.
The result of this paper should contribute to the problem of modeling the default risk for retail
portfolios, which are often characterized by a lack of information about the credit quality of each
party during the life of the loan.
Further research has to be done in the direction of modeling the recovery rate for defaulted mort-
gages.

A Appendix: Conditional intensity process

Let (Ω,G, P) be a probability space and T : Ω −→ R+ be a positive random variable. T denotes
the time where a mortgage is defaulted on. We assume that P

[
T = 0

]
= 0 and P

[
T > t

]
> 0 for

each t ∈ R+. We define the default indicator process X = (Xt){t≥0} by

Xt = 1{T≤t} =
{

1 if T ≤ t
0 otherwise .

The σ-algebra D = (Dt){t≥0} is defined by Dt := σ(Xs : 0 ≤ s ≤ t) and denotes the smallest
σ-algebra such that X is adapted. Let F = (Ft)t∈R+ be an additional flow of information available
at time t and G = (Gt)t∈R+ where Gt = Dt∨Ft ≡ σ (Dt ∪ Ft) is the enlarged filtration. For t ∈ R+

we define the stochastic process F by

Ft = P
[
T ≤ t |Ft

]
, (36)

i.e. F gives the conditional distribution function of T given F. F is a bounded, nonnegative F-
submartingale. Moreover the unconditional distribution function t �→ P

[
T ≤ t

]
is right-continuous,

which implies that F has a unique right-continuous modification (Protter 1990, Chapter 1).

Definition A.1 (F-hazard process ). We suppose that Ft < 1 for all t ∈ R+. Then the
F-hazard process Γ = (Γt)t∈R+ is defined by

Γt = − ln(1 − Ft) (37)

for t ∈ R+. We have St = 1 − Ft = exp(−Γt).

In the sequel we prove that Γt satisfies a martingale characterization and, under some assump-
tions it is the only process with this property.
We introduce the filtration (it is one) G

∗ = (G∗
t ){t≥0} defined by

G∗
t = {A ∈ G | ∃B ∈ Fi,t : A ∩ {T > t} = B ∩ {T > t}} .

We can easily check that Gt ⊂ G∗
t . It follows that on the set {T > t} each Gt-measurable random

variable coincides with a Ft-measurable random variable. We prove the following Lemma.

Lemma A.1. Let Y be a G-measurable random variable, then for each t ∈ R+

E
[
1{T>t}Y |Gt

]
= 1{T>t}

E
[
1{T>t}Y |Ft

]
P
[
T > t |Ft

] = 1{T>t} exp(Γt)E
[
1{T>t}Y |Ft

]
. (38)

Proof. Using that, on the set {T > t}, any Gt-measurable random variable is an Ft-measurable
random variable, we find an Ft-measurable random variable Z such that

E
[
1{T>t}Y |Gt

]
= 1{T>t}E

[
Y |Gt

]
= 1{T>t}Z.
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Taking the conditional expectation with respect to Ft we obtain

E
[
1{T>t}Y |Ft

]
= P
[
T > t |Ft

]
Z

and thus a formula for Z, which can be inserted in to the previous equation.

Corollary. Let 0 ≤ t ≤ s, then we have

(i) P
[
t < T ≤ s |Gt

]
= 1{T>t}

P

[
t<T≤s |Ft

]
P

[
T>t |Ft

] .

(ii) P
[
T > s |Ft

]
= P
[
T > t |Ft

]
exp(Γt − Γs).

Proof. (i) Apply Lemma A.1 on Y = 1{T≤s}.

(ii) We have

P
[
T > s |Ft

]
= E

[
E
[
1{T>s}1{T>t} |Gt

]
|Ft

]
Lemma= E

[
1{T>t} exp(Γt)E

[
1{T>t}1{T>s} |Ft

]
|Ft

]
= E

[
1{T>t} exp(Γt)E

[
E
[
1{T>s} |Fs

]
|Ft

]
|Ft

]
= E

[
1{T>t}E

[
exp(Γt) exp(−Γs) |Ft

]
|Ft

]
= P

[
T > t |Ft

]
E
[
exp(Γt − Γs) |Ft

]
.

Using Lemma A.1 we prove the following Proposition.

Proposition A.1. The process M̃ defined by the formula

M̃t := 1{T>t} exp(Γt) = (1 − Xt) exp(Γt) =
1 − Xt

1 − Ft
(39)

is a G-martingale.

Proof. Let s ≥ t, we have

E
[
1{T>s} exp(Γs) |Gt

]
= E

[
1{T>t}1{T>s} exp(Γs) |Gt

]
Lemma= 1{T>t} exp(Γt)E

[
1{T>t}1{T>s} exp(Γs) |Ft

]
= 1{T>t} exp(Γt)E

[
1{T>s} exp(Γs) |Ft

]
= 1{T>t} exp(Γt)E

[
E
[
1{T>s} exp(Γs) |Fs

]
|Ft

]
= 1{T>t} exp(Γt)E

[
exp(Γs) E

[
1{T>s} |Fs

]︸ ︷︷ ︸
=1−Fs=exp(−Γs)

|Ft

]
= 1{T>t} exp(Γt).

We now introduce the definition of the F-martingale hazard process Λ.

Definition A.2 (F-martingale hazard process). Let (Ω,G, P) be a probability space and
T : Ω −→ R+ a random time. An F-predictable right-continuous increasing process Λ is called
an F-martingale hazard process of the random time T if and only if the process M = (Mt)t∈R+

defined by
Mt = Xt − Λt∧T (40)

is a G-martingale.
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The F-martingale hazard process of the random time T exists under some technical conditions,
as stated by the following theorem. Moreover, it is unique up to time T , meaning that Λt is
uniquely defined on {T > t} (Jeanblanc and Rutkowski 2000, Section 4).

Theorem A.1 (Existence of the F-martingale hazard process). Suppose that the process
(Ft)t∈R+ defined by equation (36) is an increasing continuous process. Then the F-martingale
hazard process exists and is given by

Λt =
∫ t

0

dFu

1 − Fu
. (41)

Proof. See Jeanblanc and Rutkowski (2000, Proposition 4.7) with the additional assumption that
(Ft)t∈R+ is continuous.

Remark A.1. If (Ft)t∈R+ is absolutely continuous, then dFt = ft dt for a process (ft)t∈R+ .
(ft)t∈R+ gives the conditional density function of T given F. Looking at the definition of the
F-martingale hazard process, we see that the nonnegative, F-predictable process λF = (λF

t )t∈R+

defined by

λF

t =
ft

1 − Ft
=

ft

St
(42)

satisfies the property that
(
Xt −

∫ t∧T

0 λF

u du
)

t∈R+
is a G-martingale. A process with this property

is called conditional intensity process of T given F, as formulated in the following definition.

Definition A.3 (Conditional intensity process). The conditional intensity process of the ran-
dom time T given F is the nonnegative, F-predictable process λF such that the process
M = (Mt)t∈R+ defined by

Mt = Xt −
∫ t∧T

0

λF

u du (43)

is a G-martingale.

The next goal is to prove that, under some restriction on the process F , the F-hazard process
Γ satisfies the martingale characterization introduced by the definition of the F-martingale hazard
process Λ. The following Theorem gives the condition for which the process (Xt − Γt∧T ){t≥0} is
a G-martingale.

Theorem A.2. Suppose that the process F defined by equation (36) is an increasing and contin-
uous process. Then the process N defined by Nt = (Xt − Γt∧T ){t≥0} is a G-martingale.

Proof. N is G-adapted. Moreover, using the integration by part formula for function with finite
variation (Protter 1990), we have

Ñt := (1 − Xt) exp(Γt) = 1 +
∫ t

0

exp(Γu) ((1 − Xu) dΓu − dXu)

since Γ is an increasing continuous process, under the same assumptions for F . We have

Nt = Xt − Γt∧T = Xt −
∫ t

0

(1 − Xu) dΓu =
∫ t

0

(dXu − (1 − Xu) dΓu) = −
∫ t

0

exp(−Γu) dÑu

and thus N is G-martingale, since Ñ it is one and Γ is G-adapted.
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We have proved that, if F is continuous and increasing, then the F-hazard process satisfies the
martingale characterization. A consequence of this Theorem is that, under these assumptions on
F , we have Γt = Λt, ∀t ∈ R

+. We formulate these results in the following Proposition.

Proposition A.2. Suppose that the process F is an increasing and continuous process, then
Γt = Λt.

In the following Proposition we pull together some results of this section.

Proposition A.3. Let T : Ω −→ R+ be a random time. F and G are filtrations on (Ω,G, P)
as defined before. We suppose that T is absolutely continuous and admits a conditional intensity
process λF, given the filtration F. We have

(i) P
[
T > s |Ft

]
= P
[
T > t |Ft

]
E
[
exp
(
−
∫ s

t λF

u du
)
|Ft

]
.

(ii) St = 1 − Ft = P
[
T > t |Ft

]
= exp

(
−
∫ t

0
λF

u du
)
.

(iii) λF

t = ft

St
= ft

1−Ft
, where ft dt = dFt.

B Appendix: Generalized additive models

Let V be a random variable. Suppose that, given Y = (Y1, · · · , Yp), the random variable V has a
conditional distribution FY with expected value µ = E

[
V | Y

]
, where µ = µ(Y) is determined by

the following equation

G(µ(Y)) = η := α +
p∑

q=1

fq(Yq), (44)

for a constant α and functions (usually smooth functions) f1, . . . , fp. The right side of equation (44)
is called an additive form and represents the systematic component of the model. The function G
is the so-called link function, linking the conditional expected value to the predictors (Y1, · · · , Yp).
In (44) the assumption E

[
fq(Yq)

]
= 0 is implicit, since one can define f̃q = fq − E

[
f(Yq)

]
and

α̃ = α +
∑p

q=1 E
[
fq(Yq)

]
. The triple (η, G, FY) defines a standard generalized additive model

(GAM).
Given a GAM, one can impose some restrictions on the additive form η. We can suppose that
fq(Yq) = βqYq for some parameter βq, q = 1, . . . , p. In this case, the relationship will be linear
and we call (η, G, FY) a generalized linear model (GLM).

V is said to follow an exponential family density, if the conditional cumulative distribution function
FY has a density function given by

ρY(v; ξ, φ) = exp
(

vξ − b(ξ)
a(φ)

+ c(v, φ)
)

, v ∈ supp(FY), (45)

where ξ = ξ(Y) is called natural parameter and φ is the dispersion parameter. The function a(φ)
is often of the form a(φ) = φ

w where φ is constant over the observations and w is a known, a priori
given, weight which varies from observation to observation.
From 0 =

∫
R

∂
∂ξ ρY(v; ξ, φ) dv it follows b′(ξ) = µ(Y). Moreover, from 0 =

∫
R

∂2

∂2ξ ρY(v; ξ, φ) dv we
obtain Var [V |Y] = a(φ)b

′′
(ξ). In the case of an exponential family density we denote the GAM

by the triple (η, G, ρY).
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Example
Suppose V ∼ 1

nbinomial(n, p) where p = p(Y). Then for v ∈ [0, 1] such that nv ∈ {0, . . . , n} we
have

P
[
V = v |Y

]
=
(

n

nv

)
pnv(1 − p)n = exp

[
n

(
v log

(
p

1 − p

)
+ log(1 − p)

)
+ log

(
n

nv

)]
Let ξ = log

(
p

1−p

)
, b(ξ) = − log(1 − eξ), φ = n, a(φ) = 1

φ , c(v, φ) = log
(

φ
φv

)
. We have

P
[
V = v |Y

]
= exp

(
vξ − b(ξ)

a(φ)
+ c(v, φ)

)
.

We can easily check that p = eξ

1+eξ , thus b′(ξ) = p = E
[
V |Y

]
; a(φ)b′′(ξ) = 1

np(1−p) = Var [V |Y].

Moreover, the canonical link is given by G(p) = log
(

p
1−p

)
, which is the well-known logit link

function. Following the remark on a(φ) given above, we consider the parameter n of the binomial
distribution as a known, a priori given, weight for the observation, and the dispersion parameter
φ is identical to 1 for the binomial case.

We first consider a GLM to explain the estimation technique. Let (η, G, ρY) be a GLM with
an exponential family density ρY. We have G(µ(Y)) = η where η = α + β1Y1 + · · · + βpYp.
Let yi = (yi,1, . . . , yi,p)′, i = 1, . . . , M be subsequent observations of the predictors, µi = µ(yi),
i = 1, . . . , M are the corresponding conditional expected values and vi the observed conditionally
independent realization of V . Moreover, η = (η1, . . . , ηM ), where ηi = G(µi). The goal is to
estimate the parameter θ = (α, β1, . . . , βp)′ defining the GLM. The likelihood function of the
observations is the following

L(θ) =
M∏
i=1

ρY(vi; ξi(θ), φi) =
M∏
i=1

exp
(

viξi(θ) − b(ξi(θ))
a(φi)

+ c(vi, φi)
)

where ξi(θ) := ξ(θ,yi).
For maximizing the log-likelihood function l(θ) = logL(θ) we consider the partial derivative with
respect to θ; we obtain the score equations

0 =
∂l

∂θq+1
(θ) =

M∑
i=1

(vi − µi)
∂G−1

∂η

∣∣∣∣
ηi=G(µi)

V ar−1
i yi,q, for q = 0, . . . , p, (46)

where yi,0 = 1, ∀ i = 1, . . . , M and V ari = Var [V |yi]. We have used the formulae E
[
V |Y

]
= b′(ξ)

and Var [V |Y] = a(φ)b′′(ξ) derived above for ξ = ξ(Y).
The maximum likelihood estimation θMLE of θ is obtained by solving numerically the non-linear
equations (46) with respect to θ. A standard method to solve these equations is the Fisher-scoring
algorithm, which is a Newton-Raphson algorithm using the expected infomation matrix instead
of the observed one (details are given in Seber and Wild (1989, Chapter 2.2) and McCullagh and
Nelder (1995)). Hastie and Tibshirani (1990) propose solving (46) by a form of the iteratively-
reweighted-least-squares (IRLS) called adjusted dependent variable regression, which is equivalent
to the Fisher-scoring procedure for the case where V follows an exponential family density. The
advantage of the adjusted dependent variable regression is that no special optimization software
is required. We introduce the IRLS algorithm in the next section with the extension for the GAM
case.
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B.1 Adjusted dependent variable regression

The suggestion for the following derivation of the adjusted dependent variable regression proce-
dure comes from Hastie and Tibshirani (1990, Exercise 6.1). We show that, under the assumption
of an exponential family density, the adjusted dependent variable regression is simply the Fisher-
scoring algorithm, which is a modification of the Newton-Raphson algorithm for solving non-linear
equations.

Using the same notation as above, we define the score function and the expected Fisher-information
matrix for θ by Sθ = ∂l

∂θ and Iθ = E
[
− ∂2l

∂θ∂θ′
]

respectively. The score function and the expected
Fisher-information matrix for η are denoted by Sη = ∂l

∂η and Iη = E
[
− ∂2l

∂η∂η′
]

respectively. We
solve the equation ∂l

∂θ = 0 using the Fisher-algorithm. By Y we denote the design matrix, i.e.

Y =

 1 y1,1 . . . y1,p

...
...

...
1 yM,1 . . . yM,p

 .

We have η = Yθ. Let θ0 be the start value by the Fisher-scoring algorithm, the Newton-Raphson
step with Iθ is the following

θ1 = θ0 + I−1
θ0 Sθ0 .

Rewriting this equation using Sη and Iη, for η0 = Yθ0 we obtain

θ1 = (Y′Iη0Y)−1
Y

′Iη0(η0 + I−1
η0 Sη0)

which is exactly the LS solution of a weighted regression of z = η0 + I−1
η0 Sη0 on Y with weight

Iη0 . Up to now no restriction on the distribution family of V was considered. The last equation
can be viewed as a generalization of the adjusted dependent variable regression. We now suppose
that V follows an exponential family density (45): for this cas we compute Sη and Iη explicitly.
We use that µi = b′(ξi(θ)), b′′(ξi(θ)) = a(φi)−1V ari and ηi = G(µi), it follows for i, j = 1, . . . , M

∂ξi(θ)
∂ηj

= 1{i=j}
∂G−1

∂ηj

∣∣∣∣
ηi

(
b′′(ξ)

∣∣∣∣
ξ=ξi(θ)

)−1

= 1{i=j}
∂G−1

∂ηj

∣∣∣∣
ηi

a(φi)V ar−1
i

Using the formula for ∂ξi(θ)
∂ηj

we obtain

Sη,j =
∂l

∂ηj
=

∂

∂ηj

M∑
i=1

viξi(θ) − b(ξi(θ))
a(φi)

+ c(viφi)

=
M∑
i=1

1
a(φi)

(
vi

∂

∂ηj
ξi(θ) −

∂

∂ηj
b(ξi(θ))

)

=
M∑
i=1

1
a(φi)

(
vi −

∂

∂ξ
b(ξ)
∣∣∣∣
ξ=ξi(θ)

)
∂

∂ηj
ξi(θ)

= (vj − µj)
∂G−1

∂ηj

∣∣∣∣
ηj

V ar−1
j .
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Analogously

∂2l

∂ηi∂ηj
=

∂

∂ηi
Sη,j

= −∂G−1

∂ηi

∣∣∣∣
ηj

V ar−1
j

∂G−1

∂ηj

∣∣∣∣
ηj

+ (yj − µj)

(
∂V ar−1

j

∂ηi

∂G−1

∂ηj

∣∣∣∣
ηj

+ V ar−1
j

∂

∂ηi

∂G−1

∂ηj

∣∣∣∣
ηj

)

= −1{i=j}

(
∂G−1

∂ηj

∣∣∣∣
ηj

)2

V ar−1
j + (yj − µj)1{i=j}

(
∂V ar−1

j

∂ηj

∂G−1

∂ηj

∣∣∣∣
ηj

+ V ar−1
j

∂2G−1

∂2ηj

∣∣∣∣
ηj

)

and by taking the expectation we have

Iη,ij = E
[
− ∂2l

∂ηi∂ηj

]
= 1{i=j}

(
∂G−1

∂ηj

∣∣∣∣
ηj

)2

V ar−1
j

Hence in the case of an exponential family density, the weights w = (w1, . . . , wM )′ and the adjusted
variable z = η0 + I−1

η0 Sη0 for the weighted regression (B.1) are simply given by

wi =

(
∂G−1

∂η

∣∣∣∣
η0

i

)2

(V ar0
i )−1 (47)

and

zi = η0
i + (vi − µ0

i )

(
∂G−1

∂η

∣∣∣∣
η0

i

)−1

(48)

where µ0
i = G−1(η0

i ).
The adjusted dependent variable regression procedure therefore consists in a repeated weighted
regression of the adjusted dependent variable zi with respect to yi and weight wi (i = 1, . . . , M).
The algorithm is formally given in the sequel.

Algorithm B.1 (Adjusted dependent variable regression)
Initialization r=0 : Initial value α0 = G( 1

M

∑M
i=1 vi), β0

1 = · · · = β0
p = 0.

Iteration r → r + 1:
Compute for i = 1, . . . , M :

ηr
i = αr +

p∑
q=1

βqyi,q, µr
i = G−1(ηr

i ), V arr
i = Var (V |ηr

i ) . (49)

Moreover, for i = 1, . . . , M we define:

zi = ηr
i + (vi − µr

i )

(
∂G

∂µ

∣∣∣∣
µr

i

)
,

wi =

(
∂G

∂µ

∣∣∣∣
µr

i

)2

(V arr
i )

−1.

Estimate the parameters αr+1, βr+1
1 , . . . , βr+1

p by regressing z = (z1, . . . , zM )′ on (y1, . . . ,yM )′

with weights w = (w1, . . . , wM )′.
Repeat until the change of the log-likelihood function l(θ) is sufficiently small.
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B.2 Extension to the GAM

The idea of the adjusted dependent variable regression can be extended to the case of the GAM.
This is done by the local scoring algorithm of Hastie and Tibshirani (1990, Chapters 6.3 and 6.5)
by replacing the linear regression step with a non-parametric additive regression step. We restrict
the choice of the functions f1, . . . , fp in (44) to the class of smooth functions following Hastie and
Tibshirani (1987). In our work we have considered smoothing splines. Here we want briefly to
resume the main idea of the local scoring algorithm, given an intuitive development. Details can
be found in Hastie and Tibshirani (1986, 1990). A recent reference on GAM is moreover Schimek
and Turlach (2000).
The goal is the estimation of α, f1, . . . , fp in the generalized additive model (44). We first assume
that the link function corresponds to the identity, i.e.

E
[
V |Y

]
= α +

p∑
q=1

fq(Xq) (50)

where E
[
fq(Yq)

]
= 0 for every q. As a suggestion for the backfitting algorithm we consider the

simple case where the model V = α +
∑p

q=1 fq(Yq) + ε is correct for some ε independent of
Y, with E

[
ε
]

= 0. Moreover, we assume that α and fq′ are known for q′ �= q. We have for
Rq = V − α −

∑
q′ �=q fq′(Yq′),

E
[
Rq |Yq

]
= fq(Yq) (51)

which moreover minimizes E
[ (

V − α −
∑

q′ �=q fq′(Yq′)
)2 ]

. This suggests the following algorithm
for estimating each fq given estimates for fq′ , q′ �= q.

Algorithm B.2 (Backfitting algorithm)
Initialization r = 0: α0 = E

[
V
]
, f0

1 ≡ · · · ≡ f0
p ≡ 0.

Iteration r → r + 1:
αr = E

[
V −

∑p
q=1 f r

q (Yq)
]

Cycle over q = 1, . . . , p:

Rq = V − αr −
∑q−1

k=1 f r+1
k (Yk) −

∑p
k=q+1 f r

k

f r+1
q (Yq) = E

[
Rq |Yq

]
Until: E

[ (
V − αr −

∑p
q=1 f r+1

q (Yq)
)2 ]

fails to decrease.

In the world of the finite sample the conditional expectation in the backfitting algorithm is
replaced by a scatterplot smoother Sq[.]. Let v ∈ RM denote the vector of observations for V and
yq ∈ RM , for q = 1, . . . , p the corresponding observed predictors, then we have

fr+1
q = Sq[rq |yq ],

where fr+1
q = (f r+1

q (yq,1, . . . , f
r+1
q (yq,M ))′ and rq = v−α−

∑q−1
k=1 fr+1

k −
∑p

k=q+1 fr
k . More details

smoothing operator are given in Härdle (1990), Hastie and Tibshirani (1990). An overview is given
in Appendix C.
The parameter α is initialized by α0 = 1

M

∑M
i=1 vi and αr for r ≥ 1 can be estimated by using a

least square estimator, which corresponds to 1
M

∑M
i=1 (vi − rq,i).

Hastie and Tibshirani (1990) derive the local scoring algorithm by considering the expected log-
likelihood function E

[
l(η(Y, V )

]
, where η = α +

∑p
q=1 fq. They choose the η̂ that maximizes the
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expected log-likelihood, i.e. E
[
l(η̂(Y, V )

]
= maxη E

[
l(η(Y, V )

]
. For the maximizer η̂ one can

show that E
[

∂l
∂η |Yq

]∣∣
η̂

= 0 for every q (Hastie and Tibshirani 1990, Chapter 6.5.1). By linearizing
this equation with a first order Taylor expansion about a current guess η0, we obtain

η1 = E
[
η0 − ∂l

∂η

∣∣
η0

(
E
[ ∂2l

∂2η
|Y
]∣∣

η0

)−1

|Y
]

and thus, with the same notation as in the previous section, we have

η1(Y) = E
[
η0 + I−1

η0 Sη0 |Y
]

We define the adjusted dependent variable by Z = η0 + I−1
η0 Sη0 , then we have η1(Y) = E

[
Z |Y

]
,

which has the same form as equation (50) with Z instead of V . This suggests the implementation
of the backfitting procedure for estimating α, f1, . . . , fp. The local scoring algorithm in the case
of exponential family density is the following.

Algorithm B.3 (Local scoring algorithm)
Define ε1 > 0 and ε2 > 0 very small numbers.
Initialization r = 0: α0 = G

(
1
M

∑M
i=1 vi

)
, f0

1 = · · · = f0
p = 0.

Iteration r → r + 1:
For i = 1, . . . , M compute

ηr
i = αr +

p∑
q=1

fq,i, µr
i = G−1(ηr

i ), V arr
i = Var (V |ηr

i ) .

Moreover, for i = 1, . . . , M we define

zi = ηr
i + (vi − µr

i )

(
∂G

∂µ

∣∣∣∣
µr

i

)
,

wi =

(
∂G

∂µ

∣∣∣∣
µr

i

)2

(V r
i )−1.

z = (z1, . . . , zM )′, w = (w1, . . . , wM )′.

Backfitting Loop:
Let f (0)

q = fr
q for q = 1, . . . p.

For q = 1, . . . , p (backfitting iteration):

rq = z − αr −
∑q−1

k=1 f (1)
k −

∑p
k=q+1 f (0)

k ,

f (1)
q = Sq [rq |yq , weight = w].

If ‖f (0)
q − f (1)

q ‖ < ε1 for q = 1, . . . , p stop the backfitting loop.
Else set f (0)

q = f (1)
q for q = 1, . . . , p and repeat the backfitting iteration oncemore.

Set

fr+1
q = f (1)

q for q = 1, . . . , p and

αr+1 = WLSE

[
z − α −

p∑
q=1

fr+1
q |1, weight = w

]
,
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where WLSE denotes the weighted least square estimator of α.
Repeat the r-iteration until ∑p

q=1 ‖fr+1
q − fr

q ‖∑p
q=1 ‖fr

q ‖
< ε2.

Sq[.] now represents a weighted scatterplot smoothing procedure: it can be chosen from a variety
of candidates, such as cubic-spline, B-spline, local regression or kernel regression. We have used
cubic splines.

Example
Let V ∼ 1

nbinomial(n, p) conditional on a vector of predictors Y.
Suppose that p = p(Y) = E

[
V | Y

]
is given by

G(p(Y)) = α +
m∑

q=1

fq(Yq), (52)

where G : (0, 1) −→ R, µ �→ log(− log(1 − µ)).
Let yi (i = 1, . . . , M) be subsequent observations of Y and vi ∼ 1

ni
binomial(ni, pi) the observed

realization of V , where pi = p(yi) satisfies (52). We have

∂G

∂µ
= − [(1 − µ) log(1 − µ)]−1

,

V ari = Var [vi |yi] =
1
ni

pi(1 − p1).

The adjusted dependent variable z and the weights are thus given by

zi = ηi − (vi − pi) [(1 − pi) log(1 − pi)]
−1

,

wi = [(1 − pi) log(1 − pi)]
−2

[
1
ni

pi(1 − pi)
]−1

.

C Appendix: Scatterplot smoothing

In the previous section we introduced the local scoring algorithm for solving the GAM. In the
backfitting loop, the conditional expectation is estimated by using a scatterplot smoothing, denoted
by S[.]. In this section we consider some general characteristics of smooth operators, details can
be found in Härdle (1990) and Hastie and Tibshirani (1990).
We consider a simpler version of equation (50), i.e.

E
[
V |Y

]
= f(Y ) (53)

for some unknown function f . The goal is the estimation of the function f given pairs of ob-
servations {(vi, yi) : i = 1, . . . , M}, where vi, yi are the realization of random variables Vi and Yi

respectively, following (53). Rewriting equation (53) we have

Vi = f(Yi) + (Vi − E
[
Vi |Yi

]
). (54)

Let εi := Vi − E
[
Vi |Yi

]
. We have E

[
εi

]
= 0 and Var [εi] = E

[
V 2

i

]
− E
[
f(Yi)2

]
=: σ2

i . We suppose
that εi, i = 1, . . . , M are independent. For v = (v1, . . . , vM )′ and y = (y1, . . . , yM )′ we denote
by f̂ = S[v |y] the estimation of f by a scatterplot smoother S. S is called a linear smoother if
S[a1v1 + a2v2 |y] = a1S[v1 |y]+ a2S[v2 |y], i.e. it is linear in the observation v, given observation
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y. In this case we can simply write f̂ = Sv, where S = (Sij) is a M × M matrix depending on y,
called smoother matrix, f̂ = (f̂(y1), . . . , f̂(yM )).

In the sequel we introduce a class of linear smoothing operators, i.e. the smoothing splines.
We assume that the variance of the error term εi is a constant σ2 independent of i. This assump-
tion has to be relaxed by the smoothing operator used in the local scoring algorithm: we refer to
Hastie and Tibshirani (1990, Sections 3.11 and 5.4.1), to Green and Silverman (1994, Secion 3.5)
and to Opsomer and Kauermann (2000) for some extension to the case where weights are to be
considered.

C.1 Smoothing spline

We consider equation (54). Our goal is to estimate the function f . This section is devoted to the
smoothing spline technique, which is one possible choice for the smoothing operator S introduced
in the previous section.
Given observations {(vi, yi) : i = 1, . . . , M}, v = (v1, . . . , vM )′, a common measure of goodness of
fit for a function g is the residual sum of square

∑M
i=1 (vi − g(yi))

2. If we minimize this quantity
allowing g to be any curve, then we can easily find a g with g(yi) = vi for all i and thus the
residual sum of square will be identical to 0. This ”solution” will not be very useful: first because
it will not be a unique solution, second because no structure in the data can be found, since a very
high local variation exists. The spline smoothing approach solves this problem by ”penalizing” the
local variation with a so called roughness penalty

∫
(g′′(y))2 dy. The smoothing spline approach

minimizes the weighted sum

M∑
i=1

(vi − g(yi))
2 + λ

∫ b

a

(g′′(y))2 dy (55)

over the set of all the twice differentiable functions on [a, b], where λ is the smoothing fac-
tor, representing the rate of exchange between residual error and roughness of the curve g,
a := mini{yi}, b := maxi{yi}. The smoothing factor λ governs the tradeoff between the goodness
of fit to the data and the ”wigglyness” of the function: larger values of force f to be smoother. If
λ ↗ ∞ then the penalty term dominates, forcing g′′ = 0 on [a, b]: the solution tends to the least
square line. If λ ↘ 0 then the roughness penalty becomes unimportant and the solution will tend
to a twice differentiable interpolating function. For each constant λ ≥ 0 the optimization problem
has a unique solution f̂λ on the set of all the twice differentiable functions on [a, b]. The solution
has the following properties:

(i) f̂λ is a cubic polynomial between two successive y-values;

(ii) at each yi, f̂λ and its first two derivatives are continuous;

(iii) in a and b the second derivative of f̂λ is equal to zero.

and is thus a cubic spline with knots y1, . . . , yM (Green and Silverman 1994, Chapter 2).

Smoothing splines are linear smooth operators. In fact the fits f̂λ = (f̂λ(y1), . . . , f̂λ(yM )) of
the vector f = (f(y1), . . . , f(yM ))′ can be written as a linear transformation of the vector of ob-
servations v, i.e. f̂λ = (I + λK)−1v (Green and Silverman 1994, Chapter 2). Here I + λK is a
strictly positive matrix, K gives the roughness penalty, λ controls the smoothness of the fit. We
denote the smoothing matrix by Sλ = (I + λK)−1.
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The choice of the smoothing factor λ is a crucial decision for the estimation of the smoothing
spline f̂λ. Hastie and Tibshirani (1986) affirm that it is not convenient to express the desired
smoothness of the f̂ in terms of λ, since the meaning of the smoothing parameter depends on the
units of the prognostic factor y. Instead, it is possible to define an effective number of parameters
or degrees of freedom of a cubic spline smoother, and then to use a numerical search to determine
the value of λ to yield this number.
Following Hastie and Tibshirani (1990) we define the effective number of degrees of freedom by
dfλ = tr(Sλ), where tr(.) denotes the “trace”. It can be shown that

dfλ = 2 +
M∑
i=3

1
1 + λwi

(56)

where wi are the eigenvalues of the matrix K, assuming that w1 = w2 = 0 (two such eigenvalues
exist). Therefore, there is a strictly monotone relationship between dfλ and λ, which implies that λ
is uniquely determined by dfλ . If λ ↘ 0 (interpolating twice differentiable functions), dfλ ↗ M ; if
λ ↗ ∞ (least square line) then dfλ ↘ 2. The definition of the effective degree of freedom through
tr(Sλ) can, moreover, be motivated by an analogy with the classical parametric regression (Green
and Silverman 1994, Section 3.4). One can show for example that

E
[ M∑

i

(
vi − f̂λ(yi)

)2 ]
=
{
M − tr

[
2Sλ − Sλ(Sλ)′

]}
σ2 + (bλ)′bλ (57)

where bλ = f − E
[
Sλy
]
. In the case of the linear regression df err

λ = M − tr
[
2Sλ − Sλ(Sλ)′

]
would be exactly equal to M − p, where p is the number of parameters to be estimate (and
2Sλ − Sλ(Sλ)′ = Sλ if Sλ is the least square operator) .
Thus we define dfλ as the effective number of degrees of freedom, also for the general case where
Sλ is the smoothing spline operator. Moreover, we refer to van der Linde (2000, Section 2.3.1) for
a detailed discussion on the effective number of degrees of freedom.

The classical approach for estimating the smoothing factor λ considers the cross-validation sum
of squares CV . We suppose that the smoothing spline estimation f̂−i

λ is performed for each
i = 1, . . . , M by leaving out the ith data point (vi, yi). The λ that minimizes the cross-validation
sum of squares

CV (λ) =
1
M

M∑
i=1

(
vi − f̂−i

λ (yi)
)2

(58)

is selected. The idea is to test the quality of the predictor f̂−i
λ on the ”new” observation (vi, yi)

for each i = 1, . . . , M . For linear smoothing splines the estimation f̂−i
λ (yi) can be written as a

function of vi, f̂λ(yi) and the diagonal element Sλ
ii of Sλ (Green and Silverman 1994, Theorem 3.1).

We have

vi − f̂−i
λ =

vi − f̂λ(yi)
1 − Sλ

ii

. (59)

It follows that

CV (λ) =
1
M

M∑
i=1

(
vi − f̂λ(yi)

1 − Sλ
ii

)2

. (60)
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The diagonal elements of Sλ are not easy to obtain. This motivates the approximation of Sλ
ii by

1
M tr(Sλ) and the definition of the generalized cross-validation GCV by

GCV (λ) =
1
M

M∑
i=1

(
vi − f̂λ(yi)

1 − tr(Sλ)
M

)2

. (61)

Rewriting GCV with dfλ we obtain

GCV (dfλ) = M
M∑
i=1

(
vi − f̂λ(yi)
M − dfλ

)2

. (62)

Using that, for x ≈ 0, (1 − x)−2 ≈ 1 + 2x and that, 1
M tr(Sλ) is small enough for M and λ big

enough, we can approximate GCV (dfλ) by

GCV (dfλ) ≈ 1
M

M∑
i=1

(
vi − f̂λ(yi)

)2

+ 2
dfλ

M

1
M

M∑
i=1

(
vi − f̂λ(yi)

)2

. (63)
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