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Introduction

Over the last few years various new derivative instruments have emerged in
�nancial markets leading to a demand for versatile estimation methods for
relevant model parameters. Typical examples include volatility, covariances
and correlations. In this paper we give a survey on statistical estimation
methods for both discrete as well as continuous time stochastic models.

The text is organized as follows: in Chapter 1 we �rst motivate a model in
which volatility of a price process is assumed to follow a stochastic process.
Out of the variety of continuous time stochastic volatility models introduced
in the literature we choose two empirically relevant ones, that is an arithmetic
Ornstein-Uhlenbeck process and a square root di�usion model. Those two
models serve as reference models in some of the later chapters. As for discrete
time stochastic volatility models, we concentrate on log-AR(p) processes,
ARCH(q) and GARCH(p; q) processes all of which will be discussed in detail
in Section 3.2.

Approximations of di�usion models by discrete time models and vice versa
are described in Chapter 2. The convergence result on which these approxima-
tions are based is stated. As applications the di�usion limits of GARCH(1,1)-
type processes and of AR(1) E-ARCH processes are derived. In addition, we
present strategies for approximating di�usions and brie
y compare di�erent
discretizations of a di�usion model.

In Section 3.1 estimation of an unknown parameter in a general di�usion
process is discussed. For continuously observed processes we develop the clas-
sical theory of maximum likelihood estimation including properties like con-
sistency and asymptotic normality. In the case of discrete observations the
maximum likelihood estimator retains all the 'good' properties if the transi-
tion densities of the process are known. However, in most cases relevant for
�nance, we do not have explicit expressions for the underlying transition den-
sities and the use of approximate likelihood functions leads to inconsistent
estimators when the time between observations is bounded away from zero.
We describe alternative estimation methods, as there are martingale estimat-
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ing functions or methods based on approximating the transition densities. As
a result, we are able to obtain consistent and asymptotically normal estima-
tors. The methods introduced will be tested on some examples. In Section
3.2 discrete AR, ARCH and GARCH models and their asymptotic properties
are discussed. Finally, a brief description of Bayesian estimation is given.

Concerning nonparametric estimation in di�usions, in Section 4.1 we discuss
estimation of a probability density and estimation of an unknown signal. Sec-
tion 4.2 presents two di�erent nonparametric techniques for discrete models,
namely kernel estimators and Fourier type estimators.

In Chapter 5 we show how to solve linear stochastic di�erential equations
explicitly and give some classes of nonlinear stochastic di�erential equations
that can be reduced to linear ones.

Some necessary background material is brie
y introduced in the appendices.
An extensive bibliography guides the interested reader to further published
material.
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Chapter 1

Stochastic Volatility Models

1.1 Continuous time

The value of a stock price S is supposed to follow the process

dSt = St (�t dt+ �t dWt); (1.1)

where Wt is a Wiener process and � and � are functions of t. Considering
the logarithm of the stock price H � lnS and using Itô's formula we derive
the process followed by H

dHt = (�t � �2t
2
) dt+ �t dWt: (1.2)

In the following consider the process Ht instead of the equivalent process St.
For many purposes this leads to a more tractable di�erential equation. Also
from a statistical point of view do the increments of Ht (i.e. the so-called
log-returns) behave in a 'nicer' way as the increments of St.

In the case �t � � and �t � �, St follows geometric Brownian motion. This
is assumed in the Black-Scholes option pricing model which has been used
as an e�ective tool for the pricing of options for more than two decades.

When comparing the calculated option values using the Black-Scholes model
with the option prices there is usually a di�erence. Among these biases in
model prices the well-known \smile"-e�ect is important: the Black-Scholes
option pricing formula tends to underprice out-of-the-money-options and to
overprice at-the-money-options, that means implied volatility changes with
the striking price (see Ball [1]). This e�ect arises from the assumption in
the Black-Scholes model that volatility is a known constant (\I sometimes

5



wonder why people still use the Black-Scholes formula, since it is based on
such simple assumptions { unrealistically simple assumptions". Black [11]).

In real life volatility is not constant at all. It is non-uniform, that means on
days with major economic events volatility is usually higher than on other
days (especially on non-trading days). In addition, sometimes stock prices
jump which can be thought of as a sudden large increase in the stock's
volatility. Furthermore many economic time series have a mean-reversion
tendency: when the value of a random variable reaches a very high level then
it will rather go down than up and vice versa. Put di�erently, it tends away
from extremely high or low values and reverts to some long-term mean.

All these observations lead to the assumption that volatility is a random vari-
able and a lot of stochastic volatility models have been recently introduced
in the literature.

Now the question arises in which way stochastic volatility �2t = �2(t; !) can
be modeled. The standard framework assumes the volatility speci�cation

dv = m(v) dt+ k(v) d ~Wt; (1.3)

with v = �2t or v = ln�2t and ~Wt a Wiener process. Out of the variety of
stochastic volatility models we will consider the following two:

I: dHt = (�t � �2t
2
) dt+ �t dWt

dvt = � (�� vt) dt+ 
 d ~Wt; with vt = ln�2t (1.4)

II: dHt = (�t � �2t
2
) dt+ �t dWt

dvt = b (a� vt) dt+ c
p
vt d ~Wt ; with vt = �2t (1.5)

where �; �; 
; a; b and c are �xed constants, Wt and ~Wt are independent
Wiener processes.

In the model (1.4) volatility, or more exactly ln�2, is governed by an arith-
metic Ornstein-Uhlenbeck (or �rst order autoregressive) process with a mean-
reverting tendency. A large and growing literature treats this case as an
empirically relevant one (see Bollerslev, Engle and Nelson [14], Stein and
Stein [72], Wiggins [75]). In (1.5) a square root di�usion model for stochastic
volatility is suggested. For this model see Ball [1] and literature given there.

One further reason why we have restricted our attention to the models (1.4)
and (1.5) above is to be able to show explicitly how certain statistical esti-
mation procedures are to be implemented and also compared and contrasted
in a speci�c �nance context. Most of the techniques introduced do apply to
much more general set-ups.
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1.2 Discrete time

In the previous section we dealt with continuous time stochastic volatility
models based on systems of stochastic di�erential equations. In the discrete
time approach we consider time series models which are systems of stochastic
di�erence equations. In analogy to the continuous time approach we assume
the stock price Sn, Sn > 0, to follow the process

�Sn = Sn(�n + �nzn); (1.6)

with � and � dependent on time and zn �N (0; 1). We consider the logarithm
of the stock price Hn � lnSn. With the notation

Hn = y1 + : : :+ yn;

we derive the process

�Hn = yn = (�n � �2n
2
) + �nzn: (1.7)

We will concentrate on three di�erent discrete stochastic volatility models.
First we consider a rather simple model in which the conditional variance of
the time series fhng follows a logarithmic AutoRegressive (log-AR) process
(see Jacquier, Polson and Rossi [42]).

I. log-AR(p)/stochastic volatility:

vn = �0 + �1vn�1 + : : :+ �pvn�p + 
 ~zn; (1.8)

with vn = ln�2n and (zn; ~zn) � independent N (0; 1).

The famous AutoRegressive Conditional Heteroskedastic (ARCH) model pro-
posed by Engle [22] will be the second model to look at. The key insight of-
fered by the ARCH model lies in the distinction between the conditional and
the unconditional second order moments. While the unconditional covariance
matrix for the variables of interest may be time invariant, the conditional
variances and covariances often depend non-trivially on the past.

II. ARCH(q):
�2n = �0 + �1y

2
n�1 + : : :+ �qy

2
n�q: (1.9)

A long lag length q and a large number of parameters are often needed in em-
pirical applications of ARCH(q). To avoid this problem Bollerslev introduced
the Generalized ARCH (GARCH) model [12].

III. GARCH(p; q):

�2n = �0 + �1y
2
n�1 + : : :+ �qy

2
n�q + �1�

2
n�1 + : : :+ �p�

2
n�p: (1.10)

For a discussion of AR, ARCH and GARCH models see section 3.2.
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Chapter 2

Approximations

2.1 Di�usion models by discrete time models

The theory of �nance is mainly treated in terms of stochastic di�erential
equations, whereas in practice observations can be made only at discrete time
intervals. We want to bridge this gap by approximating di�usion models by
discrete time models and vice versa.

In this section we will deal with discrete time models as di�usion approxi-
mations. The advantage of approximating a di�usion model by a sequence
of discrete time models mainly lies in estimating and forecasting. Whereas
the likelihood function of a discrete time model is easy to compute and to
maximize, there may arise problems in deriving the likelihood of a discretely
observed nonlinear stochastic di�erential equation system, e.g. when the dif-
fusion coe�cient depends on an unknown parameter or when there are unob-
servable state variables like conditional variance (see [54], [14]). In the case
of a di�usion model with continuous observations, see 3.1.1 for the de�ni-
tion of the maximum likelihood estimator, its properties and the mentioned
problems like parameter dependence. When the di�usion model is observed
at discrete time points and the transition densities are unknown, discretizing
the continuous time log-likelihood leads to the problem of inconsistent esti-
mators. This problem is described in 3.1.2 where in addition three di�erent
approaches are given to overcome this problem. The latter also in the case
of incomplete observations.

In summary rather than estimating and forecasting with a di�usion model
observed at discrete time points it may be much easier to use a discrete time
model directly, e.g. an ARCH model, as basic approximation.
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First of all, as a simple though important example we approximate a Wiener
process using the central limit theorem. Let �1; �2; : : : be a sequence of iid
random variables de�ned on a probability space (
;B; P ). Suppose E �n = 0,
Var �n = �2 and Sn =

Pn
i=1 �i. Via the central limit theorem we have that the

distribution of Sn=(�
p
n) converges in distribution to the normal distribution

as n tends to in�nity. By means of the partial sums Sn we de�ne piecewise
linear functions Xn on the interval [0; 1]. For each n and each ! the function
Xn(�; !) is linear on each interval [(i � 1)=n; i=n], 1 � i � n and has the
value Si(!)=(�

p
n) at the point i=n with starting point S0(!) = 0. Hence,

we construct a function Xn of the form

Xn(t; !) =
1

�
p
n
Si�1(!) +

t� (i� 1)=n

1=n

1

�
p
n
�i(!);

for t 2
h
i�1
n
; i
n

i
. For each !, Xn(�; !) is a continuous function on [0; 1], i.e.

Xn(�; !) 2 C[0; 1]. Denote by Pn the distribution of Xn(�; !) in C[0; 1]. Then
Pn converges weakly to a Wiener measure W

Pn �!W

(see [10], x2). Note that this convergence result can be viewed in two di�erent
ways: on the one hand Xn can be seen as an approximation to a Wiener
process, and on the other hand the Wiener process as an approximation to
Xn. We will come back to this point later.

The main statement of this chapter is a convergence theorem, where gen-
eral conditions are given for a sequence of discrete time Markov processes
to converge weakly to an Itô process. These conditions were developed by
Stroock and Varadhan (see [73], x11.2). As mentioned in the example above,
note that given a convergence result like this, we may use this fact to tackle
the approximation problem of continuous time by discrete models and vice
versa (see section 2.2). For a presentation of the convergence theorem and
the proof we also refer to Nelson [54].

The Convergence Theorem

For h > 0 arbitrarily, consider a discrete time Markov process X0; Xh,
X2h; : : : ; Xkh denoted by fXkhg, where Xkh takes values in IRn for all k.
Assume that we know the transition probabilities of fXkhg and the distribu-
tion of the initial random pointX0. We construct the continuous time process
fX(h)

t g from the discrete time process fXkhg by making X
(h)
t a step function

with jumps at times h; 2h; 3h : : : and values X
(h)
t = Xkh almost surely for

kh � t < (k + 1)h.

Hence we have three di�erent kinds of processes to distinguish:
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1) fXkhg: the family of discrete time processes fXkhg depending on h and
on the discrete time index kh, k 2 IN.

2) fX(h)
t g: the family of continuous time processes fX(h)

t g that are step
functions constructed from the discrete time process fXkhg as described
above. Observe that fX(h)

t g depends both on h and on the continuous
time index t � 0.

3) fXtg: the limiting process fXtg, to which under some conditions as will

be shown in the theorem below, the sequence of processes fX(h)
t g for

h # 0 weakly converges.

Instead of giving the explicit mathematical conditions needed in the fol-
lowing theorem (for details see Nelson [54], pp.10-15) we brie
y describe
and interpret them. Functions ah(x; t) and bh(x; t) are de�ned as measures
of the second moment and the drift, respectively, and are required to con-
verge uniformly on compact sets to well-behaved continuous functions a(x; t)
and b(x; t). Moreover, there shall exist a continuous function �(x; t) with
a(x; t) = �(x; t)�(x; t)T . The sample paths of the limit process Xt are as-
sumed to be continuous with probability one. We require the probability
measures of the initial points X

(h)
0 to converge to a limit measure �0 as h # 0

and thus have determined the initial distribution �0 of Xt. Finally, certain
conditions are needed so that �0, a(x; t) and b(x; t) uniquely de�ne the dis-
tribution of the limit process Xt.

Theorem 1 Under the assumptions indicated above the family fX(h)
t g con-

verges weakly as h # 0 to the process fXtg de�ned by the stochastic di�erential
equation

Xt = X0 +
Z t

0
b(Xs; s) ds+

Z t

0
�(Xs; s) dW

(n)
s ;

whereW
(n)
t is an n-dimensional Wiener process independent of X0, and fXtg

has initial distribution �0. The process fXtg exists, is distributionally unique
and remains with probability one �nite in �nite time intervals.

We remark that the distribution of Xt does not depend on the choice of
�, see assumptions above. Moreover, note that convergence in distribution
means convergence regarding the whole sample path, that means the prob-
ability laws generating the sample paths fX(h)

t g converge to the probability
law generating the sample path of fXt, 0 � t � Tg for any 0 � T <1. Fur-
thermore, we remark that Nelson [54] shows the same result based on simpler
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conditions for the continuity of the sample paths of Xt and the de�nitions
for ah and bh. Later we will refer to these conditions as Nelson-conditions.

Now as an application of Theorem 1 Nelson [54] �nds and analyzes the dif-
fusion limit of GARCH(1,1)-type processes.

The GARCH(1,1)-M process of Engle and Bollerslev (see [13]) is de�ned as

Yt = Yt�1 + c �2t + �t "t; (2.1)

�2t+1 = 
 + �2t
h
� + � "2t

i
; (2.2)

where f"tg � N (0; 1) iid.

Now our purpose is to reduce the length of the time intervals more and more.
The parameters �, � and 
 of the system may depend on h. The drift term
in (2.1) and the variance of "t are made proportional to h:

Ykh = Y(k�1)h + h � c �2kh + �kh"kh; (2.3)

�2(k+1)h = 
h + �2kh

�
�h +

�h
h
"2kh

�
; (2.4)

where f"khg � N (0; h) iid and as for the initial distribution (k = 0) we have

P
h
(Y0; �

2
0) 2 A

i
= �h(A)

for all A 2 B(IR2). The continuous time processes Y
(h)
t and �

(h)
t

2
are con-

structed by

Y
(h)
t � Ykh and �

(h)
t

2 � �2kh

for kh � t < (k + 1)h. The parameters 
, � and � are allowed to depend on
h because we want to �nd the sequences f
h; �h; �hg that make the process

fY (h)
t ; �(h)t

2g converge in distribution to a limit process as h # 0. Furthermore,
in order to make the process �2t staying positive with probability one, 
h, �h,
�h are assumed to be nonnegative for all h.

For the Nelson-conditions to be satis�ed we at least need the following limits
to exist and be �nite:

lim
h#0

h�1
h � 
 � 0;

lim
h#0

h�1(1� �h � �h) � �;

lim
h#0

2h�1�2h � �2 > 0:
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By means of Theorem 1 we now obtain a di�usion limit of the form

d

 
Yt
�2t

!
=

 
c �2


 � ��2

!
dt+

 
�2 0
0 �2�4

!
d

 
W1;t

W2;t

!
; (2.5)

where W1;t and W2;t are independent Wiener processes, independent of
(Y0; �

2
0) and with initial distribution

P [(Y0; �
2
0) 2 A] = �0(A)

for all A 2 B(IR2), see [54], p.17.

At this point we see that the two sections 2.1 and 2.2 are closely related to
each other. There exists no closed form for the stationary distribution of the
system (2.1,2.2) in discrete time, but in continuous time we are able to derive
the stationary distribution of �2t in (2.5) by using the results of Wong [76]
(see Nelson [54]). The idea is to draw a conclusion concerning the stationary
distribution from continuous time to discrete time by means of Theorem 1,
that is, we use Theorem 1 in the other direction. This is the main subject of
section 2.2 and therefore regarding inference from continuous time to discrete
time we refer to the next section, where we also consider another example, a
so called E-ARCH model, proposed by Nelson.

Continuing this section, we come to the subject of strategies for approximat-
ing di�usions. Approximation schemes like the standard Euler approximation
(see Appendix B.1) or the Milstein scheme (see Appendix B.2) are known
strategies for approximating di�usions. As an example we apply the standard
Euler approximation scheme to the model (1.4), which is written here again
for the reader's convenience

dYt =

 
�t � �2t

2

!
dt+ �t dW1;t

d
h
ln
�
�2t
�i

= �
h
�� ln

�
�2t
�i
dt+ 
 dW2;t: (2.6)

The standard Euler approximation scheme for (2.6), respectively (1.4), is
given by

yt+h = yt +

 
�t � �2t

2

!
h+ �t

p
h "1;t+h

ln
�
�2t+h

�
= ln

�
�2t
�
+ h �

h
�� ln

�
�2t
�i

+ 

p
h "2;t+h; (2.7)

for t = h; 2h; 3h; : : :, with (y0; �0) �xed and "1;t, "2;t independent, � N (0; 1).
The di�usion (2.6), respectively (1.4), does not satisfy global Lipschitz con-
ditions and cannot be transformed in order to satisfy them. Thus, the known
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theorems on strong convergence of the Euler approximation (see Appendix
B.1) do not apply. But by means of the convergence theorem above the weak
convergence of the system (2.7) to the di�usion model (2.6) can be veri�ed
(for the proof we refer to [14]). Hence, with the standard Euler approximation
scheme we arrive at a way to approximate model (1.4).

As a further remark, consider a sequence of processes fXn;tg de�ned by

dXn;t = b(Xn;t; t) dt+ �(Xn;t; t) dWn;t:

Wong and Hajek [76], x4.5, show that, under reasonable conditions, as n
tends to in�nity, the processes fXn;tg converge to the process fXtg

dXt = b(Xt; t) dt+
1

2
�(Xt; t) �

0(Xt; t) dt+ �(Xt; t) dWt;

where �0 = (@�)=(@x). Note the presence of the additional term 1
2
��0 which

results from an application of the Itô formula (see Appendix C). Intuitively,
one would expect a limit without the term 1

2
��0, and note that this is the limit

in the case where the di�usion coe�cient only depends on time, �(x; t) �
�(t).

Another interesting problem is to �nd the in some sense best discretization
of a continuous time model. In the case of the centered Cox-Ingersoll-Ross
model

drt = �krtdt+ �
p
rt + 
 dWt; (2.8)

(see also model (1.5)), we refer to Deelstra and Parker [20] for a discussion
of two di�erent discretizations. Besides the 'simple' discretization of (2.8)

rt = �rt�1 + �"
p
rt�1 + 
 "t; (2.9)

where "t � N (0; 1) i.i.d. and �; �" > 0, Deelstra and Parker [20] consider
another discrete representation of (2.8)

rt = �rt�1 + �"

s
2�

1 + �
rt�1 + 
 "t; (2.10)

where "t � N (0; 1) i.i.d. and �; �" > 0. They establish the parametric rela-
tions between the continuous time model and the discrete models. Whereas in
the simple model (2.9), the mean and the stationary variance are the same as
in the continuous time model (2.8), the discretization (2.10) has in addition
the same covariance as model (2.8) at all sampling times, that is both the
�rst and the second moment are equal. Therefore the covariance equivalent
discretization (2.10) is suggested in [20] to be used as a discrete represen-
tation of the continuous time model (2.8). It is also illustrated in [20] that
although model (2.9) looks a lot like model (2.10) both models can produce
signi�cantly di�erent estimates for the parameters.
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2.2 Discrete time models by di�usion models

Approximation of discrete time models by di�usion models is a way to sim-
plify the analysis of discrete models. For instance, the properties of discrete
time models such as consistency and asymptotic normality of maximum like-
lihood estimates are rather di�cult, and often distributional results are avail-
able for the di�usion limit of a sequence of discrete processes that are not
available for the discrete models themselves. In such cases we may be able to
use a convergence theorem as in section 2.1 and approximate discrete time
processes, especially ARCH processes, by di�usion processes.

We pick up again the GARCH(1,1) model (2.1,2.2) dealt with in the previous
section, where the di�usion limit (2.5) of the system (2.1,2.2) was obtained
via the convergence theorem (with Nelson-conditions). As mentioned, there
exists no closed form for the stationary distribution of the system (2.1,2.2)
in discrete time, but we are able to derive the stationary distribution of �2t in
the di�usion limit (2.5) by using the results of Wong [76] (see Nelson [54]).
Nelson shows that the stationary distribution of �2t is an inverted gamma and
uses this knowledge in continuous time to obtain distributional results for the
discrete time. While the innovation process �kh � "kh, see (2.3), is condition-
ally normal distributed, we obtain that it is (unconditionally) approximately
distributed as a Student t, in the case when the time length between the
observations, i.e. h, is small and kh is large (see [54], p.18f).

Consider a (slightly di�erent) model (1.4)

dYt = � �2t dt+ �t dW1;t

d
h
ln
�
�2t
�i

= �
h
�� ln

�
�2t
�i
dt+ dW2;t; (2.11)

where W1;t and W2;t are Brownian motions with

 
dW1;t

dW2;t

!
(dW1;t dW2;t) =

 
1 C12

C12 C22

!
dt;

and C22 � C2
12. As mentioned in the example in the previous section (see p.12)

the system (2.11) does not satisfy global Lipschitz conditions and hence the
standard convergence theorems of the Euler approximation do not apply. Nel-
son developes a class of discrete time models based on the Exponential ARCH
(E-ARCH) model that converge weakly to a di�usion, see [54] pp.20-23. We
will consider such a di�usion approximation for the model (2.11). Since ln(�2t )
follows a continuous time AR(1) process, in the discrete time model the con-
ditional variance process is also assumed to be an AR(1) process, that means
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we assume that it follows an AR(1) E-ARCH process:

ln [Ykh] = ln
h
Y(k�1)h

i
+ h �h �

2
kh + �kh � "kh;

ln
h
�2(k+1)h

i
= ln

h
�2kh

i
+ �

h
�� ln

�
�2kh

�i
h + C12 � "kh

+

h
j"khj � (2h=�)1=2

i
; (2.12)

where 
 � [(C22 � C2
12)=(1� 2=�)]1=2 and "kh iid, � N (0; h).

If ln(�20) is normally distributed, then the ln(�2t ) process in (2.11) is Gaussian.
Otherwise, if � > 0, a Gaussian stationary limit distribution for ln(�2t ) exists.
Thus, the conditional variance in continuous time is lognormal, and as in
the GARCH(1,1) example above, from this information Nelson [54] infers
the distribution of the innovation process in the discrete time model (2.12).
He shows that in the discrete time model (with short time intervals) the
distribution of the innovations is approximately a normal-lognormal mixture.

Hence, we derived the approximate distributions of GARCH(1,1) and AR(1)
E-ARCH models for small sampling intervals by using the distributional re-
sults available for the di�usion limit.
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Chapter 3

Parameter Estimation

3.1 Di�usion models

Consider the general type of a di�usion process X = (Xt)t�0 de�ned as the
solution to the stochastic di�erential equation

dXt = b(t; Xt; �) dt+ �(t; Xt; �) dWt; X0 = x0; t � 0; (3.1)

whereW is an r-dimensional Wiener process, � 2 � � IRp, b(�; � ; �) : [0;1)�
IRd 7! IRd and �(�; � ; �) : [0;1) � IRd 7! Md�r are "nice"1 functions where
Md�r denotes the set of real d� r matrices.

The situation will be discussed where a realization of the process X is ob-
served, but the parameter � is unknown to the observer. Hence, we have
to construct su�ciently good estimators of � and examine their properties.
Deriving estimates of � there are two di�erent kinds of observations to dis-
tinguish: continuous observations of X as considered in section 3.1.1, and
discrete observations that will be considered in section 3.1.2.

3.1.1 Continuous observations

Suppose that X satis�es

dXt = b(�;Xt)dt+ �(�;Xt)dWt; X0 = x0; t � 0; (3.2)

where for convenience X and W are one-dimensional processes, b and � are
smooth functions, and the parameter � 2 � � IRp is to be estimated by

1b and � are Lipschitz continuous and satisfy a growth condition. Then there exists a
unique strong solution of (3.1), see [65], p.128 and p.136.
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continuous observations of X. X is a Markov process. P� denotes the law
of the process X on the canonical space 
 = C(IR+; IR) with the canonical
�ltration Ft = �(Xsjs � t). Denote by P�;t := P�jFt the restriction of P� to
Ft.
First consider the case where �(�; x) does not depend on �. If � does not
vanish, the measures P�;t and P�1;t for any �; �1 2 �, t <1, are equivalent,
denoted by P�;t � P�1;t, (see [39] and [51] x7, see also Appendix D). Then we
are able to introduce the so called likelihood process

L�;�1t =
dP�;t
dP�1;t

; (3.3)

the 'density process' of P�, relative to P�1 , or the 'Radon-Nikodym derivative'

(see Appendix D). The process
�
L�;�1t

�
is a Ft-martingale (see [65], x4.17).

First we will concentrate on the case with a drift term linear in �

dXt = �b(Xt)dt+ �(Xt)dWt; X0 = x0; (3.4)

where b is possibly nonlinear, � > 0, and the process (Xt) is observed in the
time interval [0; T ]. Then the likelihood process (3.3) in T with �1 = 0 equals

L�;0T � LT (�) = exp

"Z T

0

�b(Xs)

�2(Xs)
dXs � 1

2

Z T

0

�2b2(Xs)

�2(Xs)
ds

#
; (3.5)

see e.g. [51], x17, or [43], p.76, or [39]. In the following consider a constant
di�usion term �, say � � 1. For convenience we take the logarithm in (3.5)
and obtain the logarithmic likelihood (log-likelihood) function

lnLT (�) =
Z T

0
�b(Xs)dXs � 1

2

Z T

0
�2b2(Xs)ds: (3.6)

Maximizing LT , or equivalently lnLT , with respect to � we obtain the so
called Maximum Likelihood Estimator (MLE) �̂T based on continuous obser-
vations of X in the interval 0 � t � T . We remark that by de�nition of the
likelihood function the measure P�1 , that dominates the measure P� (that
is P� << P�1, see Appendix D), must not depend on an unknown parame-
ter. Such a measure P�1 cannot be found, if besides the drift coe�cient also
the di�usion coe�cient � depends on an unknown parameter, that is this
parameter cannot be estimated by the ML method.

The derivative with respect to � of the log-likelihood is called the score func-
tion

@

@�
lnLT (�) =

L0T (�)

LT (�)
;
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which in the case (3.6) has the form

@

@�
(lnLT (�)) =

Z T

0
b(Xs)dXs � �

Z T

0
b2(Xs)ds:

Solving @
@�
(lnLT (�)) = 0, we obtain the MLE

�̂T =

R T
0 b(Xs)dXsR T
0 b

2(Xs)ds

and hence, using equality (3.4), we have

�̂T = �0 +

R T
0 b(Xs)dWsR T
0 b

2(Xs)ds
; (3.7)

where �0 denotes the true value of the parameter.

Now we derive some properties of the MLE �̂T .

First, we treat the problem of the bias of an estimator. The bias in �̂T as an
estimator of �0 is de�ned as

b�̂T (�0) = E�0(�̂T � �0);

where E�0 denotes the expectation with respect to P�0. By (3.7) we have

E�0 �̂T = �0 + E�0

"R T
0 b(Xs)dWsR T
0 b

2(Xs)ds

#
: (3.8)

Note that in the case of a constant drift coe�cient b(Xt) � b

E�
bWT

b2T
=

1

bT
E�WT = 0;

thus E�0 �̂T = �0, so that �̂T is unbiased. In all other cases the estimator is
biased and in the case (3.6) we have under some regularity conditions the
equality

b�̂T (�0) =
d

d�0
E�0

 Z T

0
b2(Xt)dt

!�1
;

(see [51], x17.2 and x17.3, Theorem 17.2 and 17.3).

Now we turn to the properties of consistency and asymptotic normality.
Assuming some natural regularity conditions (see [38], p.83 and p.90, or [17],
p.500f, or [48], p.95), the stochastic di�erential equation (3.4) has an ergodic
solution. For the ergodic theory we refer to e.g. [32], x18. Then the stationary
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density ~p of the process solves the (deterministic) stationary Fokker-Planck
equation, which in the above case reduces to

d

dx
[�b(x)~p(x)]� 1

2

d2

dx2
~p(x) = 0:

Ergodicity implies

lim
T!1

1

T

Z T

0
b(Xt)dWt = 0 P�0 a.s.

and

lim
T!1

1

T

Z T

0
b2(Xt)dt =

Z 1

�1
b2(x)~p(x)dx P�0 a.s.

Hence we conclude that it is possible to achieve ultimate arbitrary precision
of the MLE �̂T in (3.7) by in�nitely increasing T , that means the MLE �̂T is
weakly consistent:

lim
T!1

P�0
h
j�̂T � �0j > "

i
= 0 (3.9)

for all " > 0.

Furthermore, under these regularity conditions the MLE is asymptotically
normal, that means as T !1 the di�erence

p
T (�̂T � �0) is asymptotically

normal with parameters (0; �2(�0)), where

�2(�0) =
�Z 1

�1
b2(x)~p(x)dx

��1
;

(see e.g. [48], p.95f, or [45], p.243).

We remark that this convergence is uniformly for all � on a compact set
K � �, (see e.g. [48], p.94f). Moreover, note that under the same regularity
conditions the MLE is also consistent and asymptotic normal if the drift term
is nonlinear (again see e.g. [48], p.94f). Finally, we remark that �2(�0) equals
I�1(�0), where I denotes the so called Fisher information

I(�) = Var

"
@

@�
lnLT (�)

#

= E

2
4 @

@�
lnLT (�)

!2
3
5 ;

which can alternatively be computed by

I(�) = �E
"
@2

@�2
lnLT (�)

#
;
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(see [49], p.249f).

Asymptotic normality can be used to determine con�dence intervals for �
and to determine a 'suitable' value of T .

Example 1. a) The regularity conditions are satis�ed in the case of obser-
vations coming from

dXt = ��Xtdt + dWt; X0 = 0; 0 � t � T; (3.10)

where � 2 (�; �), � > 0, that is �� < 0 (see [48], p.99). Thus the MLE �̂T is
consistent and asymptotically normal. The stationary density is

~p(x) =
q

�
�
e��x

2

;

and we have

�2(�0) =
�q

�0
�

Z 1

�1
x2e��0x

2

dx
��1

= 2�0;

and hence the MLE �̂T is asymptotically normal with parameters (0; 2�0).

b) In the case � 2 (�; �) and � < 0, that is �� > 0, the process has no
stationary distribution. Nevertheless we can show that the MLE �̂T is con-
sistent. Furthermore, e�0T (�̂T ��0) is asymptotically normal with parameters
(0; 4�20) (see [48], p.100).

c) In the case � = 0 the MLE �̂T is consistent, but not asymptotically normal
(see [48], p.100).

We remark that in the discrete case (section 3.2) an analogous distinction
regarding parameter values is made, see p.43.

After having treated the special case of a drift term linear in � we give a
short remark to the general case

dXt = b(�;Xt)dt+ dWt;

where b(�; x) may be a nonlinear function. By Taylor expansion for � we have

b(�; x) = b(�0; x) + (� � �0)
d

d�
b(�0; x) +O((� � �0)

2);

where �0 again denotes the true value of parameter �. Hence b(�; x) can be
approximated by a term linear in �. Since in practice a 'good guess' � of �0
often is available, then with the above considerations it is su�cient only to
consider the already treated case: a drift term linear in �. This closes our
considerations about ML estimation.
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In the following we give some remarks to the case where the di�usion term
depends on an unknown parameter �. As mentioned before in this case we
cannot estimate � by using Maximum Likelihood theory (see p.17).

As a �rst estimating problem we deal with the process

dXt = �(�)dWt; 0 � t � T: (3.11)

In order to estimate � we discretize the process and derive its limit. Consider
partitions �n =

�
t
(n)
0 ; : : : ; t

(n)
m(n)

�
of [0; T ] constructed in such a way thatP1

n=1 supk jt(n)k+1 � t
(n)
k j < 1 for n �! 1. Then for the discretized Wiener

process W we have the convergence result

mX
k=1

jW
t
(n)
k

�W
t
(n)
k�1

j2 �! T;

in probability for n �!1 (see [15], p.262f). Hence for (3.11) we obtain

mX
k=1

jX
t
(n)
k

�X
t
(n)
k�1

j2 �! T�2(�);

in probability for n �! 1, thus we are able to give an arbitrarily precise
estimate of �2(�). Notice that we do not obtain a direct estimate of �.

Next, if the unknown parameter � splits into two parts (�1; �2) in the following
way

dXt = b(t; �1)dt+ �(�2)dWt; (3.12)

we want to estimate the part �2 in the di�usion coe�cient. Denoting �X
(n)
k �

X
t
(n)
k

�X
t
(n)
k�1

and �W
(n)
k � W

t
(n)
k

�W
t
(n)
k�1

we obtain by discretizing (3.12)

mX
k=1

��
�X

(n)
k

�2 � �
�(�2)�W

(n)
k

�2�
=

mX
k=1

b2(tk; �1)
�
�t

(n)
k

�2

+2
mX
k=1

b(tk; �1)�(�2)�W
(n)
k �t

(n)
k ;

which tends to 0 in probability as n �! 1. Thus the drift term is insignif-
icant as n �! 1 and we are able to estimate �(�2) just as in the previous
case. Then by treating �2 as known we can estimate �1 via the ML method.

Finally, for the general problem with a di�usion coe�cient also depending
on X

dXt = �(�;Xt)dWt; (3.13)
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a convergence in probability result is given by

mX
k=1

jX
t
(n)
k

�X
t
(n)
k�1

j2 �!
Z T

0
�2(�;Xs)ds; (3.14)

for n �! 1 (see [24], [51], x4). A hint towards the correctness of (3.14) is
given by the well-known equality

E(X2
t ) =

Z t

0
E(�2(�;Xs))ds:

Again note that we cannot estimate � directly but are only able to estimateR T
0 �

2(�;Xt)dt.

3.1.2 Discrete observations

In this section we deal with the (more realistic) situation where the di�usion
process X (3.1) has only been observed at not necessarily equally spaced
discrete time points 0 = t0 < t1 < : : : < tn. In our discussion below, we
basicly follow Kloeden, Schurz, Platen and S�rensen [46], Bibby [4, 5, 6, 7],
Bibby and S�rensen [8] and Pedersen [58, 59, 60, 61, 62, 63].

For the estimation of � from discrete observations ofX we have to distinguish
between two cases: the transition densities of X are known or unknown.

If the transition densities p(s; x; t; y; �) of X are known, e.g. in the case of
an Ornstein-Uhlenbeck process (see p.36, Example 1), an obvious choice of
an estimator for � is the Maximum Likelihood Estimator (MLE) �̂n which
maximizes the likelihood function

Ln(�) =
nY
i=1

p(ti�1; Xti�1 ; ti; Xti ; �);

or equivalently the log-likelihood function

ln(�) � lnLn(�) =
nX
i=1

log (p(ti�1; Xti�1 ; ti; Xti ; �)) (3.15)

for �, see e.g. [2], p.14. In the case of time-equidistant observations (ti =
i�; i = 0; 1 : : : ; n for some �xed � > 0) Dacunha-Castelle and Florens-
Zmirou [19] prove consistency and asymptotic normality of �̂n as n ! 1,
independent of the value of �. Unfortunately in general the transition den-
sities of X are unknown.
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When the transition densities of X are unknown, the usual alternative esti-
mator is de�ned by approximating the log-likelihood function for � based on
continuous observations of X. For this log-likelihood function to be de�ned,
the di�usion coe�cient �(t; x; �) = �(t; x) has to be known (see Section 3.1.1,
p.17). Under some assumptions (see [51] x7) the log-likelihood function for �
based on continuous observations of X in [0; tn] can be written in terms of
integrals

lctn(�) =
Z tn

0
b (s;Xs; �)

T
�
�(s;Xs)�(s;Xs)

T
��1

dXs

�1

2

Z tn

0
b (s;Xs; �)

T
�
�(s;Xs)�(s;Xs)

T
��1

b (s;Xs; �) ds; (3.16)

and the usual approximation of these integrals leads to the approximate log-
likelihood function for � based on discrete observations of X

~ln(�) =
nX
i=1

b (ti�1; Xti�1 ; �)
T�i�1 (Xti �Xti�1)

�1

2

nX
i=1

b (ti�1; Xti�1 ; �)
T�i�1 b (ti�1; Xti�1 ; �)(ti � ti�1); (3.17)

with the notation

�i�1 �
�
�(ti�1; Xti�1) �(ti�1; Xti�1)

T
��1

:

When the di�usion coe�cient also depends on an unknown parameter, the
question arises how the parameter is to be estimated. If � divides into two
parts � = (�1; �2), such that b(�; � ; �) = b(�; � ; �1) and �(�; � ; �) is known up to
the scalar factor �2, that means �(�; � ; �) = �2~�(�; �), we may avoid the prob-
lem of parameter dependence. In this case �22 can be estimated in advance by
a quadratic variance-like formula (see Florens-Zmirou [25]), and by insert-
ing this estimate in �(�; � ; �) = �2~�(�; �), the di�usion term can be assumed
"known". Then the estimate of the approximate log-likelihood function ~ln
can be used to estimate �1.

In the case where the di�usion coe�cient �(�; � ; �) depends on � more gener-
ally, Hutton and Nelson [37] show that the discretized score function corre-
sponding to lctn can under certain regularity conditions still be used to esti-
mate �. That means in this case we are able to estimate � based on discrete
observations of X as well.

However, estimation methods for discrete observations that arise from the
theory of continuous observations have the undesirable property that the
estimators are strongly biased unless max1�i�n jti � ti�1j is "small". If the
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time between observations is bounded away from zero, especially in the case
of time-equidistant observations with � �xed, Florens-Zmirou [25] shows that
the estimator ~�n of � obtained by maximizing the approximate log-likelihood
function ~ln(�) is inconsistent.

To overcome the di�culties regarding parameter dependence and the depen-
dence of ~ln(�) on max1�i�n jti�ti�1j, we will propose three di�erent estimation
approaches. The basic idea of the �rst two approaches is to �nd good ap-
proximations to the transition densities. In the third approach we construct
martingale estimating functions.

Approximation to the transition densities of X by a sequence of
transition densities of approximating Markov processes

The following approach is proposed by Pedersen [58, 60].

We shall derive a sequence (ln;N(�))
1
N=1 of approximations to ln(�), that

builds a connection between ~ln(�) (see (3.17)) and ln(�) in the following sense:
the approximation ln;1(�) is a generalization of ~ln(�) with no restrictions
on �(�; � ; �) regarding parameter dependence, each ln;N(�) for N � 2 is an
improvement of ln;1(�) and as N tends to in�nity ln;N(�) converges for each
� in probability to ln(�).

The crucial point of the approach is to approximate the transition densities
p(s; x; t; y; �) of X by a sequence of transition densities (pN(s; x; t; y; �))

1
N=1

of approximating Markov processes which converges to p(s; x; t; y; �) as N
tends to in�nity, and then to de�ne the approximate log-likelihood functions

ln;N(�) =
nX
i=1

log (pN(ti�1; Xti�1 ; ti; Xti; �)): (3.18)

In the following we will derive the approximating densities pN(s; x; t; y; �).
We remark that we may relax the Lipschitz assumption made in (3.1) for b
and � a little bit, namely we only assume b and � to be locally Lipschitz
continuous as de�ned below.

Under the following conditions (A1), (A2) and (A3) which must hold for all
� 2 �, the stochastic di�erential equation (3.1) has a weak solution for all x0
and � and has the pathwise-uniqueness property which implies the uniqueness
in law (see [65], p.132 and p.151; in this context see also [73], x5-x8).

(A1) b and � are continuous in t for all x 2 IRd.
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(A2) b and � are local Lipschitz continuous:
for all 0 < R <1 there exists 0 < KR <1 such that

jj�(t; x; �)� �(t; y; �)jj � KRjjx� yjj ;
jjb(t; x; �)� b(t; y; �)jj � KRjjx� yjj ;

for all 0 � t � R and x; y 2 IRd with jjxjj � R, jjyjj � R.

(A3) Growth condition:
for all 0 < T <1 there exists 0 < CT <1 such that

jj�(t; x; �)jj+ jjb(t; x; �)jj � CT (1 + jjxjj)
for all 0 � t � T and x 2 IRd.

We remark that the stochastic di�erential equation (3.1) has a strong solu-
tion, if the coe�cients b and � satisfy the (global) Lipschitz condition and
for each T > 0 there exists some CT such that

j�(s; 0; �)j+ jb(s; 0; �)j � CT

for all s � T , see [65], p.136.

In addition we assume for all � 2 �

(A4) a(t; x; �) � �(t; x; �) �(t; x; �)T is positive de�nite for all t � 0 and
x 2 IRd.

Under the assumptions (A1)-(A4), any solution to (3.1) is also a solution to

dXt = b (t; Xt; �) dt+ a (t; Xt; �)
1=2d ~Wt; X0 = x0; t � 0; (3.19)

where a (t; Xt; �)
1=2 denotes the positive square root of a (t; Xt; �), and

~Wt =
Z t

0
a (s;Xs; �)

�1=2 d
�
Xs � x0 �

Z s

0
b (u;Xu; �) du

�
; t � 0; (3.20)

is a d-dimensional Wiener process.

The solutions to (3.1) (or (3.19)) for t � s with initial conditions Xs = x in-
duce for each � 2 � a unique family (P�;s;x)s�0;x2IRd of probability measures on

(
;F) = (C([0;1); IRd);B), the space of continuous trajectories from [0;1)
into IRd with its Borel �-�eld. These probability measures have the impor-
tant property that they determine the transition function P (s; x; t; A; �) of
X under P� for 0 � s < t, x 2 IRd and A 2 B(IRd):

P (s; x; t; A; �) = P�;s;x(Xt 2 A):
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For �xed 0 � s < t, x 2 IRd, � 2 � and N 2 IN, we consider for k =
0; 1; : : : ; N the Euler approximation (see Appendix B.1):

�k = s+ k
t� s

N
Y (N)
s = x

Y (N)
�k

= Y (N)
�k�1

+
t� s

N
b (�k�1; Y

(N)
�k�1

; �) + a (�k�1; Y
(N)
�k�1

; �)1=2(W �;s
�k
�W �;s

�k�1
) :

Under (A1)-(A4) we have

Y (N)
�N

� Y
(N)
t �! Xt (3.21)

in L1(P�;s;x) as N �!1 (see [45], x10.2).

Theorem 2 For �xed 0 � s < t, x 2 IRd, � 2 � and N 2 IN the distri-
bution of Y

(N)
t under P�;s;x has a density pN(s; x; t; � ; �) with respect to the

d-dimensional Lebesgue measure �d. For N=1

p1(s; x; t; y; �) = (2�(t� s))�d=2[det(a(s; x; �))]�1=2

� exp
(
� 1

2(t� s)
[y � x� (t� s)b(s; x; �)]T

� a(s; x; �)�1[y � z � (t� s)b(s; x; �)]
�
; (3.22)

and for N � 2

pN (s; x; t; y; �) = EP�;s;x
�
p1(�N�1; Y

(N)
�N�1

; t; y; �)
�
: (3.23)

For the proof we refer to Pedersen [58].

Our aim is to show that ln;N(�) will indeed be close to ln(�) for large values of
N , that is we give a result on the convergence of the approximating densities
pN(s; x; t; y; �) to p(s; x; t; y; �) as N �!1.

Theorem 3 In addition to (A2) and (A3) assume for all � 2 � that

(1) b is continuous in t and in x, and

(2) a(t; x; �) � a(�) is positive de�nite.
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Then p(s; x; t; y; �) exists, and for all 0 � s < t, x 2 IRd and � 2 � we have

pN(s; x; t; � ; �) �! p(s; x; t; � ; �)

in L1(�d) as N �!1.

The proof is given in Pedersen [58]. We remark that in addition Pedersen
[58] proves a convergence theorem, where a may also depend on x.

The L1(�d)-convergence of pN (s; x; t; � ; �) to p(s; x; t; � ; �) as N �! 1 has
the following important consequence:

Corollary 1 If pN(s; x; t; � ; �) �! p(s; x; t; � ; �) in L1(�d) as N �! 1 for
all 0 � s < t, x 2 IRd and � 2 �, then ln;N(�) �! ln(�) in probability
under P�0 as N �! 1 for all � 2 � and n 2 IN, where �0 denotes the true
parameter value.

For the proof see Pedersen [60].

We give some remarks:

(1) As shown in Pedersen [60] the ML estimator �̂n;N obtained by maxi-
mizing ln;N(�) is consistent and asymptotically normal as n and N tend
to in�nity.

(2) In the case where �(�; � ; �) = �(�; �) is independent of � one obtains

ln;1(�) = K + ~ln(�) ;

where K is some constant. Therefore ln;1 can in this case be seen as a
generalization of ~ln(�).

(3) We have derived the approximate log-likelihood functions ln;N(�) in
(3.18) under the assumption that each time-interval [ti�1; ti] is divided
into N intervals. But if the observation points are not equally spaced,
it might be favourable to choose a larger N for wider time-intervals
[ti�1; ti]. That means in general we may choose an Ni 2 IN for each
time-interval [ti�1; ti] and we obtain

ln;(N1;:::;Nn) =
nX
i�1

log
�
pNi

(ti�1; Xti�1 ; ti; Xti ; �)
�
:
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After these theoretical considerations we deal with the actual calculation of
ln;N(�) for large values of N .

In order to maximize ln;N(�) numerical algorithms usually require the value
of ln;N(�) in a �nite number of points �. For N = 1 ln;N(�) is explicitly given,
because p1 has a closed expression, but for N � 2 this is in general not the
case.

For calculating ln;N(�) for N � 2, we have to know how to calculate
pN(s; x; t; y; �) for all 0 � s < t, x; y 2 IRd and � 2 �. Considering again
equation (3.23)

pN (s; x; t; y; �) = EP�;s;x
�
p1(�N�1; Y

(N)
�N�1

; t; y; �)
�
;

the idea is to calculate pN (s; x; t; y; �) by �nding a good approximation to
the right hand side. Denote by (Um

k )
N�1;M
k=1;m=1 an i.i.d. sample from the r-

dimensional standard normal distribution. Then (Y m)Mm=1 = (Y m
N�1)

M
m=1 given

by the Euler approximation

Y m
0 = x; m = 1; : : : ;M

Y m
k = Y m

k�1 +
t� s

N
b(�k�1; Y

m
k�1; �) +

s
t� s

N
�(�k�1; Y

m
k�1; �)U

m
k

for k = 1; : : : ; N �1 and m = 1; : : : ;M , has the same distribution as an i.i.d.
sample of Y (N)

�N�1
under P�;s;x. Thus we are able to approximate the right hand

side of (3.23), while we calculate

1

M

MX
m=1

p1 (�N�1; Y
m; t; y; �) (3.24)

by means of the sequence (Um
k )

N�1;M
k=1;m=1, for M chosen su�ciently large, and

thereby we are able to calculate pN(s; x; t; y; �) with any given accuracy.

From a practical point of view it is convenient to simulate the sample
(Um

k )
N�1;M
k=1;m=1 once (see Kloeden and Platen [45]) and store it. Then it can

be used to calculate pN(s; x; t; y; �) for all values of 0 � s < t, x; y 2 IRd and
� 2 �. As for the numerical maximization of ln;N(�), we obtain appropriate
starting points by maximizing ln;1(�).

Example 1
For the one-dimensional stochastic di�erential equation

dXt = ��Xtdt+ �

vuut1 +
X2
t

1 +X2
t

dWt; (3.25)
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where X0 = 0 and t � 0, the log-likelihood function ln(�) is unknown. The
approximate log-likelihood functions (ln;N(�))

1
N=1 can be used to estimate �,

because (3.25) has a weak solution for all x0 and for all � > 0 which is unique
in law and (A4) is satis�ed for all � > 0.

With �0 = 5, n = 1000 and � = 0:1 the Milstein-scheme (see Appendix
B.2) with time-step �=1000 is used to simulate (Xi�)

n
i=0. For such a sim-

ulation the approximate log-likelihood functions ln;N(�) are calculated for
N = 1; 25; 50; 1000. The estimates that are obtained are shown in Table 3.1.

N 1 25 50 1000

�̂n;N 3.98 4.76 5.20 5.04

Table 3.1: Example 1. The estimates corresponding to the functions ln;N(�).

Approximation of the transition densities of X by means of the
Kalman �lter

The following approach is proposed by Pedersen [59, 63].

We consider the stochastic system

Xi = DiXi�1 + Si + "i; i = 1; : : : ; n; (3.26)

where (Xi)
n
i=0 are random d� 1 vectors, (Di)

n
i=0 are non-random d� d ma-

trices, (Si)
n
i=1 are non-random d�1 vectors, X0 � Nd(x0; V0), "i � Nd(0; Vi),

i = 1; : : : ; n and X0, "1; : : :, "n are stochastically independent. The non-
random elements in (3.26) including x0 and (Vi)

n
i=0 are given up to the para-

meter � 2 � � IRp.

Though this chapter is about di�usion models, we nevertheless look here at
stochastic di�erence equations of the type (3.26), since as a particular case
of (3.26) we will consider later discretely observed di�usion processes given
as solutions to linear stochastic di�erential equations in the narrow sense.
These are equations of the following kind

dXt = (AtXt + at)dt+BtdWt; X0 = x0; t � 0; (3.27)

where A : [0;1) 7!Md�d, a : [0;1) 7! IRd and B : [0;1) 7!Md�m (d � m)
are deterministic functions of t and W is an m-dimensional Wiener process.
Why (3.27) is a particular case of (3.26), will be explained below.
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Considering the system (3.26) we distinguish two cases depending on whether
X can be observed completely or only partially, i.e. wether all or only a few
coordinates of X can be observed. First, if the complete observations of
X0; X1; : : : ; Xn are given, we can use the log-likelihood function to estimate
the parameter �, see (3.15).

However, the case where X0; X1; : : : ; Xn can only be observed partially and
possibly with measurement errors often arises in practice. As mentioned, with
'partially observed' we do not mean partially in time but in coordinates of
Xi. We assume the observable quantities are Y0; Y1; : : : ; Yn given by

Yi = TiXi + Ui + ei; i = 0; 1; : : : ; n; (3.28)

where (Ti)
n
i=0 are non-random k�d matrices (k � d), (Ui)

n
i=0 are non-random

k � 1 vectors, ei � Nk(0;Wi) and X0; "1; : : : ; "m; e0; e1; : : : ; en are stochasti-
cally independent, i = 0; 1; : : : ; n. The matrices (Ti) specify the observable
parts of (Xi), the vectors (Ui) are other inputs and the vectors (ei) are mea-
surement errors. It is obvious that both the case of complete observations,
Yi = Xi, and the case of partial observations without measurement errors are
contained in the general case (3.28).

As an application to the case of incomplete observations think of a stochastic
volatility model that can be seen as a multi-dimensional process with the
volatility process as the unobservable coordinates.

In the case where all non-random elements in (3.26) and (3.28) including x0,
(Vi)

n
i=0 and (Wi)

n
i=0 are known, we want to obtain the, in some sense, best

predictions of X0; X1; : : : ; Xn from given observations of Y0; Y1; : : : ; Yn. The
conditional expectations (E(XijY i))ni=0, respectively (E(XijY i�1))ni=1, are the
best predictors of Xi given Y

i � (Y T
0 ; : : : ; Y

T
i )

T , respectively given Y i�1 �
(Y T

0 ; : : : ; Y
T
i�1)

T , in the sense of minimal variance (see Appendix A.1). They
can be calculated by means of an iterative procedure called the Kalman-Bucy
�lter.

The Kalman-Bucy �lter and �ltering theory in general are well-studied
for continuous time stochastic processes with continuous observations (see
Liptser and Shiryaev [51], Kallianpur [43], �ksendal [56] and Appendix A).
Here we consider discrete time stochastic processes, and discretely observed
continuous time stochastic processes in particular. Below we give the iterative
procedure used for calculating (E(XijY i)) and (E(XijY i�1)).

The important point is that the Kalman-Bucy �lter gives besides the predic-
tors (E(XijY i)) and (E(XijY i�1)) the density piji�1 for the conditional distri-
bution of Yi given Y

i�1. That means we are able to calculate the transition
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densities of Y and thus the log-likelihood function for � based on observa-
tions of Y0; Y1; : : : ; Yn, from which an estimation of � can be obtained. As
Pedersen [59] points out, the unknown vector x0 2 IRd should be treated as
a part of � and is not to be chosen at random. The independence of X0 and
e0 implies Y0 � Nk(T0x0 + U0; T0V0T

T
0 +W0). Hence we can calculate x0 by

x0 = T�10 (Y0�U0) a.s. if and only if k = d; V0 = W0 = 0 and T0 is of full rank.
Furthermore, the starting points of the iterative procedure used to calculate
the densities piji�1 depend on x0.

The Kalman-Bucy �lter

Under some technical assumptions (see Pedersen [59], pp. 4{5), we have for
given observations y0; y1; : : : ; yn of Y0; Y1; : : : ; Yn

XijY i = yi � Nd

�
�i(y

i);�i
�
; (3.29)

XijY i�1 = yi�1 � Nd

�
Di�i�1(y

i�1) + Si; Ri

�
; (3.30)

YijY i�1 = yi�1 � Nd

�
Ti(Di�i�1(y

i�1) + Si) + Ui; TiRiT
T
i +Wi

�
; (3.31)

where Ri = Di�i�1D
T
i + Vi is positive de�nite, and where

�0(y
0) = x0 + V0T

T
0

�
T0V0T

T
0 +W0

��1
(y0 � T0x0 � U0); (3.32)

�0 = V0 � V0T
T
0

�
T0V0T

T
0 +W0

��1
T0V0; (3.33)

�i(y
i) = Di�i�1(y

i�1) + Si +RiT
T
i

�
TiRiT

T
i +Wi

��1
(yi � Ti

�
Di�i�1(y

i�1) + Si
�
� Ui) ; (3.34)

�i = Ri � RiT
T
i (TiRiT

T
i +Wi)

�1TiRi: (3.35)

By means of the Kalman-Bucy �lter we are now able to calculate ln(�) for
every �xed � 2 � for given observations y0; y1; : : : ; yn of Y0; Y1; : : : ; Yn.

The iterative procedure (by means of the Kalman-Bucy �lter)

(0) Calculate �0(y
0) and �0 by means of formula (3.32) and (3.33).

(1) Given �i�1(y
i�1) and �i�1 the conditional distribution of Yi given Y

i�1

is known, and so we can calculate the transition density piji�1(yijyi�1; �).
(2) Calculate �i(y

i) and �i by means of formula (3.34) and (3.35) and
return to (1).
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An Application

As an application of the above theory, we consider the linear stochastic dif-
ferential equation (3.27). The functions A, a, and B are assumed to be con-
tinuous and given up to the unknown parameter � 2 � � IRp. Under these
assumptions the stochastic di�erential equation (3.27) has for every �xed
x0 2 IRd and � 2 � a unique solution given by

Xt = �t

�
x0 +

Z t

0
��1u audu+

Z t

0
��1u BudWu

�
; t � 0 ; (3.36)

where � is the deterministic d� d matrix process solving

d�t = At�tdt; �0 = Id; t � 0: (3.37)

If

At

�Z t

0
Asds

�
=
�Z t

0
Asds

�
At

for all t > 0 then

�t = exp
�Z t

0
Asds

�
is the unique solution to (3.37). We want to estimate � from possibly incom-
plete discrete observations of X at time-points 0 = t0 < t1 < : : : < tn. From
(3.36) we obtain

Xt = �t�
�1
s Xs +

Z t

s
�t�

�1
u audu+

Z t

s
�t�

�1
u BudWu

for 0 � s < t, and hence the Markov chain fXtigni=0 can be represented by
the stochastic system

Xti = �ti�
�1
ti�1

Xti�1 +
Z ti

ti�1
�ti�

�1
s asds+ "ti ; i = 1; : : : ; n; (3.38)

where "ti ; : : : ; "tn is a sequence of stochastically independent random d � 1
vectors with "ti � Nd(0; Vti) and

Vti =
Z ti

ti�1
(�ti�

�1
s Bs)(�ti�

�1
s Bs)

Tds ; i = 1; : : : ; n: (3.39)

All assumptions in Pedersen [59], pp. 4{5, for the Kalman-Bucy �lter (see
(3.29){(3.35)) can be made to be satis�ed for (3.38). Thus (3.38) is a partic-
ular case of (3.26) with

Dti = �ti�
�1
ti�1

; (3.40)

Sti =
Z ti

ti�1
�ti�

�1
s asds: (3.41)

32



We can use the previous results to estimate � from possibly incomplete ob-
servations of fXtigni=0 of the type given by (3.28).

Note that in many applications, the non-random elements Dti (3.40), Sti
(3.41) and Vti (3.39), can not be calculated exactly. The solution to (3.37)
may be unknown. In that case fXtigni=0 can be approximated by the Euler ap-
proximation (see Appendix B.1). But even if the solution to (3.37) is known,
Sti and Vti often can not be calculated exactly, and hence have to be approx-
imated; this can be done by di�erent methods depending on the concrete
application.

Martingale estimating functions

The following approach is proposed by Bibby and S�rensen [8].

We consider one-dimensional di�usion processes de�ned by the stochastic
di�erential equations

dXt = b(Xt; �) dt+ �(Xt; �) dWt; (3.42)

where X0 = x0 and t � 0. Besides the usual assumptions on b and � in (3.1),
such that (3.42) has a unique solution for all � in an open subset � � IR, the
functions b and � are supposed to be twice continuously di�erentiable with
respect to both arguments and � is assumed to be positive. In contrast to
(3.1), for convenience here we only consider the time-homogeneous case. To
simplify the exposition further, assume that we can observe fXtg at discrete
equidistant time points, say �; 2�; : : : ; n�. Later we will give an extension
to the case where X and � are multi-dimensional.

Our goal is to estimate the parameter � from these discrete observations
X�; X2�; : : : ; Xn� of fXtg. Inference from discrete time observations can
be based on an approximation of the score function of the continuous log-

likelihood function lt(�). Denote this approximation by _~ln(�). For the de�ni-
tion of the continuous log-likelihood see 3.1.1, p.17. In the case where � does
not depend on � the continuous time log-likelihood function is

lt(�) =
Z t

0

b(Xs; �)

�2(Xs)
dXs � 1

2

Z t

0

b2(Xs; �)

�2(Xs)
ds; (3.43)

see also (3.5). If we replace the Lebesgue integrals and the Itô integrals by
Riemann-Itô sums and di�erentiate with respect to � we get the approximate
score function

_~ln(�) =
nX
i=1

_b(X(i�1)�; �)

�2(X(i�1)�)
(Xi� �X(i�1)�)��

nX
i=1

b(X(i�1)�; �) _b(X(i�1)�; �)

�2(X(i�1)�)
:

(3.44)
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If � depends on � we use the same estimating function

_~ln(�) =
nX
i=1

_b(X(i�1)�; �)

�2(X(i�1)�; �)
(Xi� �X(i�1)�)��

nX
i=1

b(X(i�1)�; �) _b(X(i�1)�; �)

�2(X(i�1)�; �)
:

(3.45)
By using this approach for the estimation of � the problem of inconsistency
arises as already mentioned in the introduction of this section, p.23. To avoid
this problem we can use martingale estimating functions of which we will
construct four di�erent types. The idea is to modify the discretized score-

function _~ln(�) in such a way that a zero-mean P�-martingale is obtained. Then
the estimator can be shown to be consistent and asymptotically normal.

(1) Our �rst approach is to compensate _~ln, so that a martingale ~Gn is
obtained.

By substracting from _~ln(�) its compensator we get a zero-mean P�-martingale
with respect to the �ltration de�ned by Fi = �(X�; : : : ; Xi�), i = 1; 2; : : :.
The compensator is:

nX
i=1

E�

�
_~li(�)� _~li�1(�)jFi�1

�
=

nX
i=1

_b(X(i�1)�; �)

�2(X(i�1)�; �)
(F (X(i�1)�; �)�X(i�1)�)

��
nX
i=1

b(X(i�1)�; �) _b(X(i�1)�; �)

�2(X(i�1)�; �)
; (3.46)

where
F (X(i�1)�; �) � E�(Xi�jX(i�1)�): (3.47)

Thus we obtain a zero-mean martingale estimating function of the form

~Gn(�) =
nX
i=1

_b(X(i�1)�; �)

�2(X(i�1)�; �)

�
Xi� � F (X(i�1)�; �)

�
: (3.48)

(2) Alternatively we consider the general class of zero-mean P�-
martingale estimating functions

Gn(�) =
nX
i=1

gi�1(X(i�1)�; �)
�
Xi� � F (X(i�1)�; �)

�
; (3.49)

where for i = 1; : : : ; n, the function gi�1 is Fi�1-measurable and continuously
di�erentiable in �. The optimal estimating function within the class (3.49)
in the asymptotic sense of Godambe and Heyde [33] is

G�
n(�) =

nX
i=1

_F (X(i�1)�; �)

�(X(i�1)�; �)

�
Xi� � F (X(i�1)�; �)

�
; (3.50)
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where

�(X(i�1)�; �) = E�
h
(Xi� � F (X(i�1)�; �))

2jX(i�1)�

i
; i = 1; : : : ; n: (3.51)

The function G�
n(�) is within the class (3.49) in some sense "closest" to the

score function based on the usually unknown exact likelihood function.

It should be mentioned here that for small � the martingale estimating
function ~Gn(�), de�ned in (3.48), is a �rst order approximation in � of G�

n,
that means ~Gn(�) is approximately optimal.

(3) In some cases there are possibly numerical problems in calculating
_F (x; �) in (3.50). One way to solve these problems involves approximating
_F (x; �) up to the order O(�2). That leads to a third martingale estimat-
ing function

G+
n (�) =

nX
i=1

�
_b(X(i�1)�; �)� +

1

2
�2

�
_b(X(i�1)�; �)b

0(X(i�1)�; �)

+b(X(i�1)�; �)_b
0(X(i�1)�; �) +

1

2
( _�2(X(i�1)�; �)b

00(X(i�1)�; �)

+�2(X(i�1)�; �)_b
00(X(i�1)�; �))

�i (Xi� � F (X(i�1)�; �))

�(X(i�1)�; �)
: (3.52)

Altogether we have now found expressions for three di�erent zero-mean P�-
martingale estimating functions.

As for the multi-dimensional case, suppose � is k-dimensional, fXtg and
b(Xt; �) are d-dimensional, � is a d�m-dimensional matrix with ��T positive
de�nite and the Wiener process fWtg is m-dimensional. Then the k � 1-
dimensional martingale estimating functions ~Gn and G

�
n have the form

~Gn(�) =
nX
i=1

_b(X(i�1)�; �)
T
�
�(X(i�1)�; �)(�(X(i�1)�; �)

T
��1

�
�
Xi� � F (X(i�1)�; �)

�
and

G�
n(�) =

nX
i=1

_F (X(i�1)�; �)
T�(X(i�1)�; �)

�1
�
Xi� � F (X(i�1)�; �)

�
;

where � is assumed to be positive de�nite and _b and _F denote the d � k-
dimensional matrices of partial derivatives with respect to the components
of �.
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The asymptotic properties of the estimator �̂n we obtain from the martingale
estimating functions (3.48), (3.50) and (3.52), or more generally from the
class of martingale estimating functions Gn of the form (3.49), are discussed
by Bibby and S�rensen [8]. Under natural regularity conditions (see Bibby
and S�rensen [8], pp. 7{9) we have

Theorem 4 An estimator �̂n, which solves the equation

Gn(�̂n) = 0;

exists with probability tending to one as n �! 1 under P�0. Moreover, as
n �!1,

�̂n �! �0

in probability under P�0 and �̂n is asymptotically normal in distribution under
P�0.

For the proof we refer to [8].

As a �rst example we consider the Ornstein-Uhlenbeck process where the
transition densities are well-known.

Example 1
The Ornstein-Uhlenbeck process is the solution of the stochastic di�erential
equation

dXt = �Xt dt+ � dWt; (3.53)

withX0 = x0. In this case the drift coe�cient is b(x; �) = �x and the di�usion
coe�cient �(x; �) � � is assumed to be known. The transition probability is
normal with mean F (x; �) = x e�� and variance �(�) = �2

2�
(e2�� � 1). Hence

the estimating function ~Gn has the form

~Gn(�) =
1

�2

nX
i=1

X(i�1)�(Xi� �X(i�1)�e
��) ;

and we obtain �̂n as solution of ~Gn(�) = 0:

�̂n =
1

�
log

Pn
i=1X(i�1)�Xi�Pn
i=1X

2
(i�1)�

:

The estimators �̂n we obtain from the martingale estimating functions G+

and G� are the same because G+ and G� are proportional to ~G.

In the next example we consider a wider class of stochastic processes.
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Example 2
The solutions of the stochastic di�erential equation

dXt = (� + �Xt) dt+  (Xt) dWt; (3.54)

where X0 = x0 and the function  takes positive values in IR, are called
mean-reverting processes (see also model (1.5)). The unknown parameters
are � and �. Our aim is to be able to calculate the martingale estimating
functions ~Gn and G�

n.

Lemma 1 The function

f(t) � E�;�(XtjX0)

solves
f 0(t) = � + �f(t): (3.55)

Proof: Write (3.54) in integral form

Xt = X0 +
Z t

0
(� + �Xs)ds+

Z t

0
 (Xs)dWs:

Conditioning on X0 we have

E�;�(XtjX0) = E�;�(X0jX0) + E�;�

�Z t

0
(� + �Xs)dsjX0

�

+E�;�

�Z t

0
 (Xs)dWsjX0

�
| {z }

=0

;

and equivalently

E�;�(XtjX0) = X0 + �t+ �
Z t

0
E�;�(XsjX0)ds:

We conclude
dE�;�(XtjX0)

dt
= � + �E�;�(XtjX0);

and the claim follows. Note that the function fr(t) = E�;�(XtjXr), 0 � r � t,
also solves (3.55), for the proof stays the same apart from

E�;�

�Z t

0
 (Xs)dWsjXr

�
=
Z r

0
 (Xs)dWs;

which is independent of t and thus plays no role in the derivative. 2
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Corollary 2 For

F (X(i�1)�;�; �) = E�;�
�
Xi�jX(i�1)�

�
we have

F (x;�; �) = xe�� +
�

�
(e�� � 1): (3.56)

Proof: The solution of

f 0(t) = � + �f(t); f(t0) = f0; t � t0;

is
f(t) = f0 e

�(t�t0) +
�

�
(e�(t�t0) � 1):

Hence we have for E�;�(Xti jXti�1) � f(ti) with constant � � ti � ti�1 for
all i

E�;�(Xti jXti�1) = E(Xti�1 jXti�1) e
�� +

�

�
(e�� � 1)

= Xti�1e
�� +

�

�
(e�� � 1);

and the claim follows. 2

With (3.56) we are now able to calculate ~Gn and G
�
n in the following way

~Gn(�; �) =

"
nX
i=1

1

 2(X(i�1)�)

�
Xi� �X(i�1)�e

�� +
�

�
(1� e��)

�
;

nX
i=1

X(i�1)�

 2(X(i�1)�)

�
Xi� �X(i�1)�e

�� +
�

�
(1� e��)

�#T
;

G�
n(�; �) =

"
nX
i=1

e�� � 1

��(X(i�1)�;�; �)

�
Xi� �X(i�1)�e

�� +
�

�
(1� e��)

�
;

nX
i=1

�e��(X(i�1)� + �
�
) + �

�2
(1� e��)

�(X(i�1)�;�; �)

�
Xi� �X(i�1)�e

�� +
�

�
(1� e��)

�#T
:

Considering G+ is not interesting since F is known.

The estimation equation ~Gn(�; �) = 0 can be solved explicitly. Abbreviating
 2
i�1 �  2(X(i�1)�) we obtain

e
~�n� =

�Pn
i=1

X(i�1)�

 2i�1

��Pn
i=1

Xi�

 2i�1

�
�
�Pn

i=1
X(i�1)�Xi�

 2i�1

��Pn
i=1

1
 2i�1

�
�Pn

i=1
X(i�1)�

 2
i�1

�2
�
�Pn

i=1

X2
(i�1)�

 2
i�1

��Pn
i=1

1
 2
i�1

�
(3.57)
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and

~�n =
~�n

1� e~�n�

�Pn
i=1

X(i�1)�

 2
i�1

�
e
~�n� �

�Pn
i=1

Xi�

 2
i�1

�
�Pn

i=1
1

 2
i�1

� : (3.58)

As regarding the martingale estimating function G�
n we are able to �nd a

closed expression for � only in a few cases where the di�usion coe�cient is
rather simple. For instance, if  (x) = �

p
x (as in the square root di�usion

model (1.5), the Cox Ingersoll Ross model) we have with a similar argu-
ment as for F (that is, the conditional second moment solves an ordinary
di�erential equation)

�(x;�; �) =
�2

2�2

�
(�+ 2�x)e2�� � 2(�+ �x)e�� + �

�
:

As an extension we consider the mean-reverting process where � > 0 enters
the di�usion coe�cient

dXt = ��Xtdt+
q
� +X2

t dWt:

With the same argument as above we obtain the conditional variance

�(x;�; �) = x2e�2��(e� � 1) +
�

2� � 1
(1� e(1�2�)�):

We remark that in practical applications the estimating equations corre-
sponding to G�

n can be solved using a generalization of Newton's method.

Furthermore, if no explicit expressions for the conditional mean F and the
conditional variance � are known, then F and � can be approximated by the
sample mean and sample variance of a large number of simulated realizations
of the di�usion process at the relevant time point.

(4) As an extension we shall combine martingale estimating functions
in an 'optimal' way.

The following approach is proposed by Bibby [5].

If the unknown parameter � is multi-dimensional and a part of � is only found
in the di�usion coe�cient, then using the martingale estimating functions
generated by the conditional mean, ~Gn and G�

n, leads to fewer estimation
equations than parameters. That is in this case neither G� nor ~G can be
used to estimate the part of � that only enters the di�usion coe�cient. This
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disadvantage of ~Gn and G�
n motivates us to consider martingale estimat-

ing functions generated by higher order conditional moments for
example by the conditional variance:

Hn(�) =
nX
i=1

h(X(i�1)�; �)
��
Xi� � F (X(i�1)�; �)

�2 � �(X(i�1)�; �)
�
; (3.59)

with � given by (3.51) and F given by (3.47). In analogy to (3.50) we ob-
tain the optimal estimating function within the class (3.59), in the sense of
Godambe and Heyde [33]. This optimal function takes the form

H�
n(�) =

nX
i=1

_�(X(i�1)�; �)

 (X(i�1)�; �)

��
Xi� � F (X(i�1)�; �)

�2 � �(X(i�1)�; �)
�
; (3.60)

where � is assumed to be di�erentiable in � and  is the fourth conditional
cumulant

 (X(i�1)�; �) = E�

��
Xi� � F (X(i�1)�; �)

�4 jX(i�1)�

�
� �(X(i�1)�; �)

2;

where i = 1; : : : ; n.

Combining the functions Gn and Hn leads to further martingale estimating
functions that may have better properties. Following the optimal way of
combining Gn and Hn described in Heyde [35], the function K�

n is obtained:

K�
n(�) =

nX
i=1

"
_�(�)�(�)� F (�) (�)

�(�) (�)� �2(�)
(Xi� � F (�))

+
_F (�)�(�)� _�(�)�(�)

�(�) (�)� �2(�)

�
(Xi� � F (�))2 � �(�)

�#
; (3.61)

where for abbreviation the �rst argument of all functions on the right hand
side, that is X(i�1)�, has been left out and where � denotes the third condi-
tional central moment

�(X(i�1)�; �) = E�
h
(Xi� � F (X(i�1)�; �))

3jX(i�1)�

i
; i = 1; : : : ; n:

For K�
n, as for Gn, it can be shown that an estimator obtained from the esti-

mating equation K�
n(�) = 0 exists, is consistent and asymptotically normal.

Under some regularity conditions (see Bibby [5], pp. 4{6) we have

Theorem 5 An estimator �̂n exists for every n, which on a set Cn solves
the equation

Kn(�̂n) = 0;
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where P�0(Cn) �! 1 as n �!1. Moreover, as n �!1,

�̂n �! �0

in probability under P�0 and �̂n is asymptotically normal in distribution under
P�0.

For the proof we refer to [5, 8].
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3.2 Discrete models

In section 1.2 we dealt with three kinds of stochastic volatility models, fol-
lowing an AR(p)-process, an ARCH or even a GARCH process. Now we
discuss Maximum Likelihood (ML) estimation for these models and derive
the properties of the estimators. Finally, we treat the Bayesian analysis.

3.2.1 AR models

In our representation of estimation theory for the AR(1)-process we follow
[67] x5. The parameter estimation problem for linear time series (i.e. ARMA
processes) is to be found in many textbooks, see for instance [16], [34], [64].
Below we discuss a slightly di�erent approach which will turn out to be
useful in more general models. The AR(1) case should therefore be seen as a
pedagogic example with respect to this more general methodology.

Consider the autoregressive AR(1) model

Xn = �Xn�1 + "n; n � 1; (3.62)

where � 2 � � IR is the parameter to be estimated, X0 is a random variable
with E(X0) = 0 and f"n; n � 1g is `noise', where "n � N (0; �2) i.i.d. with
known �2.

From equation (3.62) we conclude

Xn = "n + �"n�1 + : : :+ �n�1"1 + �nX0;

and thus the probabilistic properties of fXng essentially depend on the joint
distribution of X0; "1; "2; : : :. We have

Var�Xn = �2(1 + �2 + : : :+ �2(n�1)) + �2nVar�X0 (3.63)

and

E�XnXn�k = �2�k(1 + �2 + : : :+ �2(n�k�1)) + �k�2(n�k)Var�X0: (3.64)

In the case j�j < 1, we obtain from (3.63) and (3.64) by choosing X0 �
N (0; �2

1��2
)

E�Xn = 0; Var�Xn =
�2

1� �2
; E�XnXn�k =

�2�k

1� �2
;

and fXng has a stationary distribution.
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In the case j�j � 1 we have Var�Xn �! 1 as n �! 1, that is the process
explodes.

In both cases � = �1, fXng reduces to a random walk.

From these considerations we suppose that as for probabilistic properties of
estimators of �, e.g. asymptotic behaviour, we have to distinguish between
the cases j�j > 1, j�j < 1 and j�j = 1.

In the following we assume for the AR(1) model (3.62) X0 = 0 and �2 = 1
for convenience.

Denoting by p�(X1; : : : ; Xn) the joint density of X1; : : : ; Xn, the Maximum
Likelihood Estimator (MLE) �̂n is de�ned to be a value � such that the joint
density p� reaches a maximum that is

�̂n = argmax p�(X1; : : : ; Xn);

(for the de�nition of the MLE in continuous time see x3.1.1, p.17). We know
the joint density p� of X1; : : : ; Xn

p�(X1; : : : ; Xn) = (2�)�
n
2 exp

"
�1

2

nX
i=1

(Xi � �Xi�1)
2

#
;

and hence are able to calculate �̂n by solving d
d�
p� = 0

�̂n =

Pn
i=1Xi�1XiPn
i=1X

2
i�1

:

Inserting (3.62) for Xi we obtain

�̂n = � +

Pn
i=1Xi�1"iPn
i=1X

2
i�1

P� a:s: (3.65)

Denoting

Mn =
nX
i=1

Xi�1"i;

we see immediately that the process Mn is a martingale with respect to the
�ltration Fn = �(X1; : : : ; Xn) under P� for any �. The martingale Mn is
square integrable, i.e. EM2

n < 1, n � 0, and we know that the stochas-
tic sequence M2

n is a submartingale (see [66] x7.1, p.455). By means of the
Doob decomposition (see e.g. [66], p.454) there is a martingale mn and a
predictable2 increasing3 sequence hMin such that

M2
n = mn + hMin:

2A process Xn is predictable if Xn is Fn�1 measurable.
3A process Xn is increasing if X0 = 0, Xn � Xn+1 P a.s.
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The sequence hMin is called the square characteristic or the quadratic vari-
ation of Mn. Here hMin is

hMin =
nX
i=1

X2
i�1;

see [66], p.455.

Hence, equation (3.65) can be written as

�̂n � � =
Mn

hMin : (3.66)

Recall the de�nition of the Fisher information in the continuous time case
(see 3.1.1, p.19). Here in discrete time the Fisher information equals

In(�) = E�

"
�@

2 ln p�(x1; : : : ; xn)

@�2

#
:

Direct calculation shows

In(�) = E�
X

X2
i�1;

hence
In(�) = E�hMin;

and therefore hMin is often called the stochastic Fisher information. Cal-
culations based on (3.63) show that for large n the Fisher information is
approximately

In(�) �

8>><
>>:

n
1��2

; j�j < 1;
n2

2
; j�j = 1;

�2n

(�2�1)2
; j�j > 1:

Since
hMin �!1 P� a:s:;

we can apply the `law of large numbers for square integrable martingales'
and obtain

Mn

hMin �! 0 P� a:s:;

see [66], p.487, Theorem 4. Thus, with (3.66) we conclude that the estimator
is strongly consistent, that is

�̂n �! � P� a.s.

as n tends to in�nity.

As for asymptotic behaviour of the estimator we only state the results and
refer to [67] x5 for a detailed treatment.
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Theorem 6 Depending on the value of � we have the following asymptotic

behaviour for the normalized deviation
q
In(�)(�̂n � �):

lim
n�!1

P�

�q
In(�)(�̂n � �) � z

�
=

8><
>:

�(z); j�j < 1;
H�(z); j�j = 1;
Ch(z); j�j > 1;

where �(z) is the standard normal distribution, Ch(z) is the Cauchy distri-
bution and H�(z) is the distribution of the random variable

�
W 2(1)� 1

2
3
2
R 1
0 W

2(s)ds
;

where W denotes a Wiener process.

Hence, in the stationary case j�j < 1 the normalized deviation
q
In(�)(�̂n��)

is asymptotically normally distributed, whereas in the other cases it has
as limit distribution the Cauchy distribution or the quite unexpected H�

distribution. The question arises wether we can reduce the number of limit

distributions by modifying the normalizing factor
q
In(�). Indeed, instead of

using the Fisher information In(�) = EhMin, choosing the stochastic Fisher
information hMin as normalizing factor we obtain

Theorem 7

lim
n�!1

P�

�q
hMin (�̂n � �) � z

�
=

(
�(z); j�j 6= 1;
H�(z); j�j = 1:

Summarizing: the MLE �̂n is (strongly) consistent and the normalized devi-

ations
q
In(�)(�̂n � �) and

q
hMin(�̂n � �) are asymptotically distributed as

shown in both theorems.

3.2.2 ARCH and GARCH models

In the following we concentrate on ARCH and GARCH models and espe-
cially on estimation in these models. We refer to the fundamental papers by
Engle [22] and Bollerslev [12] and to Bollerslev, Chou and Kroner [13] and
Bollerslev, Engle and Nelson [14].

Conventional econometric time series models assume constant variance. How-
ever, over a decade ago risk and uncertainty considerations lead to the devel-
opment of new econometric time series models that allow for the modeling
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of time varying variances and covariances. Engle [22] introduced such a new
class of stochastic processes, called the class of AutoRegressive Conditional
Heteroscedastic (ARCH) processes where the conditional variances and co-
variances depend on the past. These are discrete time stochastic processes
f"tg of the form

"t = zt�t (3.67)

with zt i. i. d. , E(zt)=0, Var(zt)=1, and with time-varying positive �t which
is time (t� 1) measurable. Assume in the following zt � N (0; 1) and "t is a
scalar process. The extension to the multivariate case is straightforward, see
e.g. [13].

First we focus directly on the process f"tg (3.67) and assume that "t is itself
observable. However, note that in many applications "t corresponds to the
innovations for some other stochastic process yt, where yt = f(b; xt)+"t with
"t conditionally distributed N (0; �2), f a function of xt which is time (t� 1)
measurable and of a parameter vector b. In this context we will consider
later the ARCH regression model, see (3.75), where f(b; xt) � x0tb, that is
the conditional mean of yt is given as x0tb.

The conditional variance of "t equals �
2
t . We will concentrate in the follow-

ing on some frequently used models for �2t . Engle [22] suggests one possible
parametrization for �2t as a linear function of the past q squared values of
the process

�2t = �0 +
qX
i=1

�i"
2
t�i; (3.68)

where for the model to be well-de�ned �0 > 0 and �i � 0 for i = 1; : : : ; q.
This model is known as the linear ARCH(q) model.

Now we discuss Maximum Likelihood (ML) estimation in the linear ARCH(q)
model. For a discussion of the ML estimation see section 3.1.1. Apart from
some constants, the log-likelihood of the tth observation is

lt = �1

2
log�2t �

1

2
"2t=�

2
t ; (3.69)

where the term �1
2
log�2t arises from the transformation from zt to "t. The

log-likelihood function for the full sample "T ; "T�1; : : : ; "1 is

L =
1

T

TX
t=1

lt: (3.70)

To estimate the unknown parameters �0 � (�0; �1; : : : ; �q) we maximize the
log-likelihood function, that is the �rst order derivatives are set equal to zero.
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Denoting u0t � (1; "2t�1; : : : ; "
2
t�q) and ht � �2t we abbreviate (3.68) by

ht = u0t�:

With this notation the �rst order derivatives are

@lt
@�

=
1

2ht
ut

 
"2t
ht
� 1

!
: (3.71)

In order to obtain the limiting distributions for the normalized deviations of
the estimators in (3.76) below, we have to estimate the Fisher information
matrix F , see x3.1.1, p.19, which is the negative expectation of the Hessian
averaged over all observations. Therefore we calculate the Hessian

@2lt
@�@�0

= � 1

2h2t
ut u

0
t

 
"2t
ht

!
+

"
"2t
ht
� 1

#
@

@�0

�
1

2ht
ut

�
: (3.72)

Since the conditional expectation of the factor "2t=ht is one and of the second
term in (3.72) is zero, the Fisher information matrix is given by

F =
X
t

1

2T
E

"
1

h2t
ut u

0
t

#
;

and consistently estimated by

F̂ =
1

T

X
t

"
1

2h2t
ut u

0
t

#
:

Later we will discuss the properties of the estimators, see p.49.

In many applications with the linear ARCH(q) model a large number of para-
meters and a long lag length q are needed. These problems are avoided by an
alternative, more general parametrization of ht introduced by Bollerslev [12].
This more general model is called the Generalized ARCH, or GARCH(p; q),
model

�2t = �0 +
qX
i=1

�i"
2
t�i +

pX
i=1

�i�
2
t�i;

where q > 0, p � 0, �0 > 0, �i � 0 for i = 1; : : : ; q, and �i � 0 for
i = 1; : : : ; p. The generalization in the GARCH(p; q) model in comparison
to the ARCH(q) model is that beside past values of the process, also past
conditional variances enter.

Denote 
0 � (�0; �1; : : : ; �q; �1; : : : ; �p), ht � �2t and v0t � (1; "2t�1; : : : ; "
2
t�q;

ht�1; : : : ; ht�p). As for the ARCH model we estimate 
 by di�erentiating the
log-likelihood with respect to 


@lt
@


=
1

2ht

@ht
@


 
"2t
ht
� 1

!
:
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The Hessian is

@2lt
@
@
0

= � 1

2h2t

@ht
@


@ht
@
0

 
"2t
ht

!
+

"
"2t
ht
� 1

#
@

@
0

"
1

2ht

@ht
@


#
; (3.73)

where
@ht
@


= vt +
pX
i=1

�i
@ht�i
@


: (3.74)

The di�erence from the ARCH model is the inclusion of the recursive part in
(3.74). As for the ARCH model, the Fisher information matrix is consistently
estimated by the sample analogue of the �rst term in (3.73).

As mentioned earlier we consider a generalization of model (3.67), (3.68), the
ARCH regression model

"t = yt � x0tb;

ht = u0t�; (3.75)

where "t is conditionally distributed as N (0; ht), b is a parameter vector
and xt is time (t � 1) measurable. As in the linear ARCH(q) model the
conditional mean of "t is zero, but the conditional mean of yt is given as x0tb.
The conditional variance for both "t and yt is ht.

As for the linear ARCH(q) model we consider ML estimation for the ARCH
regression model. In addition to the parameter � estimated as in the linear
ARCH(q) model we have to estimate parameter b. The derivative with respect
to b is given by

@lt
@b

=
"tx

0
t

ht
+

1

2ht

@ht
@b

 
"2t
ht
� 1

!
:

The Hessian is

@2lt
@b@b0

= �x
0
txt
ht

� 1

2h2t

@ht
@b

@ht
@b0

 
"2t
ht

!

�2"tx
0
t

h2t

@ht
@b

+

 
"2t
ht
� 1

!
@

@b0

"
1

2ht

@ht
@b

#
:

Taking conditional expectations, the last two terms of the Hessian vanish
and "2t=ht becomes one, so that the part of the Fisher information matrix
corresponding to b is given by

Fbb = 1

T

X
t

E

"
x0txt
ht

+
1

2h2t

@ht
@b

@ht
@b0

#
;
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and by substituting the linear variance function, Fbb is consistently estimated
by

F̂bb = 1

T

X
t

2
4x0txt
ht

+ 2
X
j

�2j
"2t�j
h2t

x0t�jxt�j

3
5 :

Finally we give a remark to the ML estimation for the GARCH regression
model

"t = yt � x0tb;

ht = v0t
;

with vt and 
 as above. In order to estimate the mean parameters b we
di�erentiate with respect to b as shown for the ARCH regression model with
the single di�erence

@ht
@b

= �2
qX
j=1

�jxt�j"t�j +
pX
j=1

�j
@ht�j
@b

:

Paying attention to this di�erence, the part of the Fisher information matrix
corresponding to b is consistently estimated as in the ARCH regression model.

We denote by F��, respectively F

 , the part of the Fisher information ma-
trix corresponding to �, respectively 
, and the elements in the o�-diagonal
block of the information matrix by F�b, respectively by F
b. The elements
F�b, respectively F
b, may be shown to be zero. Because of this asymptotic
independence �, respectively 
, can be estimated without loss of asymptotic
e�ciency based on a consistent estimate of b and vice versa. Using this fact
Engle [22], x6, formulates a simple scoring algorithm for the ML estimation
of the parameters � and b.

As for the properties of the estimators, Bollerslev [14] remarks that for the
general ARCH class of models the veri�cation of su�cient regularity condi-
tions for the MLE to be consistent and asymptotically normally distributed
is very di�cult. A detailed proof is only worked out in a few cases. Nor-
mally one assumes that these regularity conditions are satis�ed, such that
the ML estimators �̂, respectively 
̂, and b̂ are consistent and asymptotically
normally distributed with limiting distribution

p
T (�̂� �) �! N (0;F�1

�� ); resp.
p
T (
̂ � 
) �! N (0;F�1



 );

and
p
T (b̂� b) �! N (0;F�1

bb ): (3.76)

Closing our considerations about estimation in ARCH/GARCH models we
remark that Geweke [31] developes Bayesian inference procedures for ARCH
models by using Monte Carlo methods to determine the a posteriori distrib-
ution. The Bayesian analysis is discussed in the next section.
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3.2.3 The Bayesian estimation method

Suppose we have the data x = (x1; : : : ; xn) with distribution p(xj�) where
� is the unknown parameter we want to estimate. The basic idea of the
Bayesian approach is to treat the parameter � as a random variable and to
use a guess or an a priori knowledge of the distribution �(�) of � and then
to estimate � by calculating the a posteriori distribution �(�jx) of �. For
details about the Bayesian theory we refer to [3] and [55]. First of all the
Bayesian method will be described in the case where the parameter � is one-
dimensional. Furthermore, the k-dimensional case and the hierarchical model
will be discussed.

The one-dimensional case

In the one-dimensional case the a posteriori distribution �(�jx) of � is calcu-
lated by the so called Bayes formula using the a priori distribution �(�) as
follows

�(�jx) = p(xj�)�(�)R
p(xj�)�(�)d� ; (3.77)

where the denominator is a proportionality constant making the total a pos-
teriori probability equal to one. Now by using the a posteriori distribution
�(�jx) the parameter � can be estimated for example via the modus of the a
posteriori distribution

�̂ = arg max �(�jx)
or by the mean

�̂ = E [�(�jx)]
or by the median

�̂ = median [�(�jx)] :
For the asymptotic properties of the estimator we refer to [3], x5.3 Asymptotic
Analysis.

Example (One-dimensional case)

Suppose that x = (x1; : : : ; xn) and xij� � N (�; �2) i. i. d., where �2 is known.
Choose an a priori distribution of � � N (�0; �

2
0). With the Bayes formula

�(�jxi) / exp

(�(xi � �)2

2�2

)
exp

(�(� � �0)
2

2�20

)

/ exp

(
�1

2

 
1

�2
+

1

�20

!"
�2 � 2�

xi�
2
0 + �0�

2

�2 + �20
+ : : :

#)
;
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where the terms and factors not written out do not involve �, we have

�jxi � N
 
xi�

2
0 + �0�

2

�2 + �20
;

1

��2 + ��20

!
;

and with

�(�jx) /
nY
i=1

p(xij�) �(�)

/ exp

(�(�x� �)2

2�2=n

)
exp

(�(� � �0)
2

2�20

)
;

we have

�jx � N
 
�xn�20 + �0�

2

n�20 + �2
;

1

n��2 + ��20

!
;

where �x = 1
n

P
xi.

The multi-dimensional case

In the multi-dimensional case � = (�1; : : : ; �k), the a posteriori distribution
of � can be calculated by the Bayes formula as follows

�(�jx) = p(xj�)�(�)R
: : :
R
p(xj�)�(�) d�1 : : : d�k : (3.78)

By using the marginal distributions �(�ijx) of the joint a posteriori distrib-
ution �(�jx)

�(�ijx) =
Z
: : :
Z
�(�jx) d�1 : : : d�i�1d�i+1 : : : d�k; (3.79)

we are able to estimate � by the ways described in the one-dimensional case
above.

Usually problems arise in calculating the integrals in (3.79) which require
approximation techniques. We will discuss simulations of distributions using
so called Markov Chain Monte Carlo (MCMC) methods. The key idea of
the MCMC methods is described in the following. For details we refer to
[71], [3] p.353 or [55]. Suppose we want to generate a sample from an a
posteriori distribution �(�jx) for � 2 � � IRk, but cannot directly do this.
However, suppose we are able to construct a Markov chain with state space
� and with equilibrium distribution �(�jx). Then under suitable regularity
conditions asymptotic results exist, showing in which sense the sample output
from such a chain with equilibrium distribution �(�jx) can be used to mimic
a random sample from �(�jx) or to estimate the expected value of a function
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f(�) with respect to �(�jx). If �1; �2; : : : ; �t; : : : is a realization from a suitable
chain then

�t �! �

in distribution as t tends to in�nity, � � �(�jx) and

1

t

tX
i=1

f(�i) �! E�jx [f(�)] a.s.

as t tends to in�nity. Now we need algorithms to construct such chains with
speci�ed equilibrium distributions. We will discuss two particular forms of
Markov chain schemes, the Gibbs sampling algorithm and the Metropolis{
Hastings algorithm.

The Gibbs sampling algorithm

Suppose � = (�1; : : : ; �k) is the vector of unknown quantities. We want to
simulate �(�ij x) for i = 1; : : : ; k. Denote by �(�j x) = �(�1; : : : ; �kj x) the
joint density and by �(�ij x; �j; j 6= i) the so called induced full conditional
densities for each of the components �i given values of the other components
�j, j 6= i, for i = 1; : : : ; k. Suppose that we are able to sample from each of
these one-dimensional distributions.

The Gibbs sampling algorithm (see Geman and Geman [29]):

1) choose arbitrary starting points �0 = (�01; : : : ; �
0
k).

2) make random drawings from the full conditional distribution as follows

�11 from �(�1jx; �0j ; j 6= 1)

�12 from �(�2jx; �11; �03; : : : ; �0k)
�13 from �(�3jx; �11; �12; �04; : : : ; �0k)

: : :

�1k from �(�kjx; �ij; j 6= k)

This completes a transition from �0 = (�01; : : : ; �
0
k) to �

1 = (�11; : : : ; �
1
k).

3) iterating step 2) produces a sequence �0; �1; : : : ; �t; : : : which is a re-
alization of a Markov chain with transition probability K from �t to
�t+1

K(�t; �t+1) =
kY
l=1

�
�
�t+1l

��� x; �tj; j > l; �t+1j ; j < l
�
:
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The important property of the Gibbs sampling algorithm is that we only sam-
ple from the full conditional distributions. As t tends to in�nity, (�t1; : : : ; �

t
k)

tends in distribution to a random vector with joint density �(�jx), see e.g.
[29]. In particular, �ti tends in distribution to a random quantity with density
�(�ijx). The above algorithm is assumed to be replicated m times indepen-
dently, that means we have m replicates of �t = (�t1; : : : ; �

t
k). Then for large t

the replicates (�ti1; : : : ; �
t
im) are approximately a random sample from �(�ijx).

For m su�ciently large we obtain an estimate �̂(�ijx) for �(�ijx) from

�̂(�ijx) = 1

m

mX
l=1

�(�ijx; �tjl; j 6= i):

For more details we refer to [55], p.226�.

The Metropolis{Hastings algorithm

In order to construct a Markov chain �1; : : : ; �t; : : : with state space � and
equilibrium distribution �(�jx) we �nd the transition probability from �t �
� to the next state �t+1 via the Metropolis{Hastings algorithm as follows:
Denote by q(�; �0) a transition probability function such that in the case
�t = �, �0 drawn from q(�; �0) is considered as a proposed possible value for
�t+1. However, a further randomization takes place. With probability �(�; �0)
we accept �t+1 = �0, otherwise we reject the value generated from q(�; �0) and
set �t+1 = �.

This construction de�nes a Markov chain with transition probability given
by

�(�; �0) =

(
q(�; �0)�(�; �0); if �0 6= �;

1�P�00 q(�; �
00)�(�; �00); if �0 = �:

With the de�nition

�(�; �0) =

8><
>: min

(
�(�0jx)q(�0; �)
�(�jx)q(�; �0) ; 1

)
; if �(�jx) q(�; �0) > 0;

1; if �(�jx) q(�; �0) = 0;

provided that q(�; �0) is chosen to be irreducible and aperiodic on a suit-
able state space, we have that �(�jx) is the equilibrium distribution of the
constructed chain. For more details see [71].

Hierarchical models

An hierarchical model forms a structure in the following way: the distri-
bution of the data x is written conditionally on parameters �1 as p(xj�1),
and the distribution of �1 is written conditionally on 'hyperparameters' �2 as
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p(�1j�2) and we have the a priori distribution of �2, �(�2). This is the so called
three-stage hierarchical model which is considered in many applications. The
three stages are x, �1 and �2 as above, that means a three-stage model has
the structure p(xj�1), p(�1j�2), �(�2). We could continue this process and
write the distribution of �2 conditionally on other hyperparameters �3 as
p(�2j�3) and so on. We obtain the k-stage hierarchical model p(xj�1), p(�1j�2),
p(�2j�3); : : : ; p(�k�2j�k�1); �(�k�1).
The model includes the assumption of conditionally independence: condition-
ing on �j, the parameters x; �1; �2; : : : ; �j�1 and the parameters �j+1; : : : ; �k�1
are independent. Especially consider the three-stage model with p(xj�1),
p(�1j�2), �(�2). The distribution p(xj�1) is formally the distribution of x
given �1 and �2. However, if we know �1 then knowing �2 would not add
any information about x, this means x and �2 are independent given �1.

By the Bayesian analysis of such a three-stage hierarchical model the special
structure allows us to write the a posteriori distribution �(�1; �2jx) in the
form

�(�1; �2jx) / p(xj�1; �2)p(�1; �2)
/ p(xj�1)p(�1j�2)�(�2);

and inference for �2 is given by its marginal distribution

�(�2jx) / p(xj�2)�(�2):

The marginal distributions to be used for inference for the parameters can
be calculated by MCMC methods.

Example (Hierarchical model)

An example of an hierarchical three-stage stochastic model can be found in
[42], where the conditional variance follows a log-AR(1) process:

yt =
q
ht ut

lnht = � + � lnht�1 + ���t;

where (ut; vt) � N (0; 1) independent, or more generally we can consider the
log-AR(p)-model

yt =
q
ht ut

lnht = � + �1 lnht�1 + �2 lnht�2 + : : :+ �p lnht�p + ���t;

where (ut; vt) � N (0; 1) independent. In this model the time series of the data
y is generated from a probability model p(yjh) where h denotes the vector of
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volatilities. The volatilities h are unobserved and are assumed to be generated
by p(hj
) with 
T = (�; �; ��). Denote �1 = h, �2 = 
, �T = (�1; : : : ; �p). Via
the Bayes formula we have

�(�1; �2jy) / p(yj�1)p(�1j�2)�(�2):

The marginal distributions p(�1jy), p(�2jy) can be calculated by using MCMC
methods as Gibbs sampling or Metropolis{Hastings algorithm.
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Chapter 4

Nonparametric Estimation

4.1 Di�usion models

Nonparametric estimation in general deals with estimating functionals in sit-
uations where the latter are not determined by a �nite number of parameters,
e.g. estimating a probability density at some �xed point, derivatives of a den-
sity, and others. For a thorough treatment of nonparametric estimation we
refer to Ibragimov and Has'minskii [38], x4 and x7.
We consider estimation of a probability density at a point based on obser-
vations in IR. Suppose X1; : : : ; Xn is a sample from a population random
variable X taking values in IR with unknown density f(x). If we only know
that f(x) belongs to a class F of functions, estimating f(x) typically is an
in�nite dimensional nonparametric problem. Using the function

�(x) =

(
0; x < 0;
1; x � 0;

the number of observations smaller than x can be written as

nX
k=1

�(x�Xk):

Thus, with this notation the empirical distribution function of the data
X1; : : : ; Xn is

Fn(x) =
1

n

nX
k=1

�(x�Xk); (4.1)

which is a well-known estimator for the distribution function F (x). For n
su�ciently large we know that Fn(x) is close to the actual distribution func-
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tion
F (x) =

Z x

�1
f(y)dy:

The latter statement can be made precise for instance through the Borel-
Cantelli Lemma and its various re�nements (see [68]) .

In order to construct a density estimator fn(x) starting from the empirical
distribution function Fn(x) in (4.1), we have to smooth Fn. One possibility
is by using so-called kernel density estimators

fn(x) =
1

nhn

nX
k=1

V
�
x�Xk

hn

�
;

where the kernel V : IR �! IR+ satis�esZ 1

�1
V (x)dx = 1;

and where the so-called bandwidth sequence (hn) is such that

hn �! 0; nhn �!1:

This class of estimators is referred to as the Parzen-Rosenblatt estimators.
Under certain restrictions on f(x) the sequence fn(x) converges in some
probabilistic sense to f(x). See [38], x4.4, and [69] for a detailed discussion.

Ibragimov and Has'minskii [38], x7, present some interesting approaches to
and examples of nonparametric estimators of a signal S(t), belonging to a
certain functional space. Two models for signals are considered. A �rst one
has the form

dX(t) = S(t)dt+ "db(t); (4.2)

with 0 � t � 1, (b(t)) a Wiener process, " small (typically " # 0) and X(t) is
an observed signal on [0; 1]. A second model is of the form

dX(t) = S(t)dt+ db(t); (4.3)

with 0 � t � n, S(t) a one-periodic function and X(t) is observed over n
time periods.

As a basic example consider estimation of the functional F on S(t)

F (S) =
Z 1

0
f(t)S(t)dt;

with S; f 2 L2(0; 1). The functional F has to be estimated based on obser-
vations of (4.2), respectively (4.3). The estimator

F̂1 =
Z 1

0
f(t)dX(t)
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for model (4.2) and the estimator

F̂2 =
1

n

Z n

0
f(t)dX(t)

for model (4.3) both can be shown to have good properties. Both estimators
are normally distributed with mean F (S) and variance "2jjf jj2, respectively
jjf jj2=n. We refer to [38], x7.4 and x7.5, for more details.

4.2 Discrete models

In section 3.2 we dealt with parametrizations of volatility, e.g. with the
ARCH(q) process f"tg (3.67), where "tjFt�1 � N (0; �2t ), Ft being the in-
formation �-algebra at time t, and

�2t = �0 +
qX
i=1

�i"
2
t�i: (4.4)

Instead of considering a parametric approach as (4.4) we now discuss non-
parametric techniques for the estimation of the volatility �2t .

Basicly there are two di�erent nonparametric approaches: kernel estimators
and Fourier type estimators. For details we refer to Pagan and Schwert [57].

In order to estimate �2s = E ("2sjFs�1), kernel methods essentially use a
weighted sum over "2j , j = 1; : : : ; T , j 6= s:

�̂2s =
TX
j=1
j 6=s

w
(s)
j "2j ; (4.5)

where the sum over all (T � 1) weights w
(s)
j , j = 1; : : : ; T , j 6= s, equals one.

The aim is to obtain an estimate of E ("2sj"s�1; "s�2; : : : ; "s�m) for m suitably
chosen. If the preceding values of "j, that is "j�1; "j�2; : : : ; "j�m, are similar
to the preceding values of "s, that is "s�1; "s�2; : : : ; "s�m, then "

2
j is expected

to give useful information about E ("2sj"s�1; "s�2; : : : ; "s�m). In this case, the

weight w
(s)
j is large. If the values that preceded "j di�er 'substantially' from

the preceding values of "s, then "
2
j is expected to give only little information

about E ("2sj"s�1; "s�2; : : : ; "s�m) and therefore w(s)
j is close to zero. We remark

that in the sum (4.5) the element w(s)
s "2s is left out to avoid the situation where

'outliers' in the data lead to a weight w(s)
s close to unity, while all the other

w
(s)
j are close to zero, so that only "2s determines �̂2s .
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There are many possible weighting schemes. A popular one uses a Gaussian
kernel. With the notation z0j = ("j�1; "j�2; : : : ; "j�m) we have

w
(s)
j =

K(zs � zj)PT
r=1K(zr � zs)

;

where K(�) is the Gaussian kernel

K(zs � zj) =
1q

2�jHj
exp

�
�1

2
(zs � zj)

0H (zs � zj)
�
;

with H = diag(h1; : : : ; hm) containing the bandwidths that were set to
�̂kT

�1=(4+m), where �̂k is the sample standard deviation of "s�k, the kth
component of zs, k = 1; : : : ; m.

Another approach to nonparametric estimation of volatility is an approxi-
mation using series expansion. The most frequently used series expansion in
economics is the Flexible Fourier Form (FFF) introduced by Gallant [28],
which leads to a volatility estimate of the form

�̂2t = �0 +
mX
j=1

(�
�j"t�j + �j"

2
t�j

�
+

2X
k=1

(
jk cos(k "t�j) + �jk sin(k "t�j))

)
;

that means �2t is estimated by a sum of a low-order polynomial and trigono-
metric terms based on "t�j, j = 1; : : : ; m. Note the disadvantage of the FFF
that the estimates of �2t may be negative. We refer to [57] for more details.
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Chapter 5

Some Di�usion Models with

Explicit Solutions

In this chapter our representation follows [45], x4.2-4.4.

5.1 Linear stochastic di�erential equations

We �rst consider the class of linear stochastic di�erential equations. To sim-
plify the exposition we concentrate on the scalar case and afterwards give
the extension to the multivariate case.

The general form of a scalar linear stochastic di�erential equation is

dXt = (a1(t)Xt + a2(t)) dt+ (b1(t)Xt + b2(t)) dWt; (5.1)

where a1; a2; b1; b2 are "nice"1 functions of time t or constants. As in the
case of ordinary di�erential equations, the method of solution also involves
a fundamental solution of an associated homogeneous di�erential equation.
Here the homogeneous linear equation belonging to the general equation (5.1)
is

dXt = a1(t)Xt dt + b1(t)XtdWt: (5.2)

In order to �nd its fundamental solution �t;t0 , that means the solution of
(5.2) satisfying �t0;t0 = 1, we �rst look at the special case b1(t) � 0, that
means at the ordinary di�erential equation

dXt

dt
= a1(t)Xt: (5.3)

1They are Lebesgue measurable and bounded on an interval 0 � t � T . Then a unique
(strong) solution Xt on t0 � t � T exists for each 0 � t0 < T .
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We know the fundamental solution of (5.3)

�t;t0 = exp
�Z t

t0
a1(s)ds

�
; (5.4)

or equivalently
d [ln�t;t0 ] = a1(t)dt: (5.5)

Equation (5.5) motivates us to consider ln�t;t0 also in the general case with
�t;t0 solving equation (5.2). Applying the Itô formula2 on ln�t;t0 we obtain

d [ln�t;t0 ] =
�
a1(t)� 1

2
b21(t)

�
dt+ b1(t)dWt; (5.6)

thus, with �t0;t0 = 1,

ln�t;t0 =
Z t

t0

�
a1(s)� 1

2
b21(s)

�
ds+

Z t

t0
b1(s)dWs;

or

�t;t0 = exp
�Z t

t0

�
a1(s)� 1

2
b21(s)

�
ds+

Z t

t0
b1(s)dWs

�
: (5.7)

Now that we derived the solution �t;t0 of the homogeneous linear equation
(5.2) we want to obtain the general solution Xt of (5.1). In an analogous way
to (5.6) we derive by means of the Itô formula3

d[��1t;t0 ] =
�
�a1(t) + b21(t)

�
��1t;t0dt� b1(t)�

�1
t;t0
dWt: (5.8)

As we will see later we have to consider the process ��1t;t0Xt in order to
�nd an explicit expression for Xt. The processes ��1t;t0 and Xt both include
the same Wiener process Wt, and (5.2) and (5.8) can be seen as a two-
dimensional stochastic di�erential equation. In order to calculate d(��1t;t0Xt)
we therefore have to use the Itô formula for vector valued processes4 with
the transformation U(Xt;�

�1
t;t0) = ��1t;t0Xt. We obtain

d[��1t;t0Xt] = (a2(t)� b1(t)b2(t)) �
�1
t;t0dt+ b2(t)�

�1
t;t0dWt:

Hence with �t0;t0 = 1 we get by integration

��1t;t0Xt = Xt0 +
Z t

t0
(a2(s)� b1(s)b2(s))�

�1
s;t0
ds+

Z t

t0
b2(s)�

�1
s;t0
dWs;

2see Appendix C.1
3see Appendix C.1
4see Appendix C.2
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and thus

Xt = �t;t0

�
Xt0 +

Z t

t0
(a2(s)� b1(s)b2(s))�

�1
s;t0ds+

Z t

t0
b2(s)�

�1
s;t0dWs

�
: (5.9)

Summarizing: the solution Xt of the general scalar linear stochastic di�eren-
tial equation

dXt = (a1(t)Xt + a2(t)) dt+ (b1(t)Xt + b2(t)) dWt; (5.10)

is

Xt = �t;t0

�
Xt0 +

Z t

t0
(a2(t)� b1(t)b2(t)) �

�1
t;t0
ds+

Z t

t0
b2(t)�

�1
s;t0
dWs

�
; (5.11)

with the fundamental solution

�t;t0 = exp
�Z t

t0

�
a1(s)� 1

2
b21(s)

�
ds+

Z t

t0
b1(s)dWs

�
: (5.12)

All the special cases { as only additive or only multiplicative noise, homo-
geneous or inhomogeneous equations, constant or variable coe�cients { are
contained in the general case (5.10).

At this point we give a short extension of the scalar to the multidimensional
case. The general form of a d-dimensional linear stochastic di�erential equa-
tion is

dXt = (A(t)Xt + a(t))dt+
mX
i=1

(Bi(t)Xt + bi(t))dW i
t ; (5.13)

where A(t); B1(t); B2(t); : : : ; Bm(t) are d � d-matrix functions, a(t), b1(t),
b2(t) : : : ; bm(t) are d-dimensional vector functions and W = fWt; t � 0g is
an m-dimensional Wiener process with components W 1

t ;W
2
t ; : : : ;W

m
t , which

are independent scalar Wiener processes. Using the same arguments as for
the scalar case above we �nd the solution of (5.13)

Xt = �t;t0

"
Xt0 +

Z t

t0
��1s;t0

 
a(s)�

mX
i=1

Bi(s)bi(s)

!
ds+

mX
i=1

Z t

t0
��1s;t0b

i(s)dW i
s

#
;

(5.14)
where �t;t0 is the d � d fundamental matrix with �t0;t0 = I and satisfying
the homogeneous matrix stochastic di�erential equation

d�t;t0 = A(t)�t;t0dt+
mX
i=1

Bi(t)�t;t0dW
i
t ; (5.15)

which can be seen column vector by column vector as d vector stochastic dif-
ferential equations. We remark that unlike in the case of scalar homogeneous
linear equations we cannot generally solve (5.15) for �t;t0 explicitly.
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5.2 Nonlinear stochastic di�erential equa-

tions

In the previous section we saw how to solve a scalar linear stochastic di�er-
ential equation (5.10) explicitly. Under special conditions also some classes
of nonlinear stochastic di�erential equations can be solved explicitly by a
reduction to a linear equation. In the following we will examine those classes
and their reductions in the scalar case. We remark that the two models (1.4)
and (1.5) considered in chapter 1 do not belong to these classes.

Certain nonlinear stochastic di�erential equations

dXt = a(t; Xt) dt+ b(t; Xt) dWt; (5.16)

with a(t; Xt); b(t; Xt) di�erentiable functions, can be reduced under special
conditions to linear stochastic di�erential equations

dYt = (a1(t)Yt + a2(t))dt+ (b1(t)Yt + b2(t)) dWt (5.17)

by a transformation U(t; Xt) = Yt. We know by means of the Inverse Function
Theorem that in case of @U

@x
(t; x) 6= 0 a local inverse x = V (t; y) of y = U(t; x)

exists.

Our purpose is to determine conditions for a and b in (5.16), so that such
a suitable transformation U(t; x) = y (with @U

@x
(t; x) 6= 0) and coe�cient

functions a1(t); a2(t); b1(t) and b2(t) can be found. Then we solve the linear
equation (5.17) explicitly (by means of (5.11)) and with Xt = V (t; Yt) we get
a solution of (5.16).

In order to determine conditions for the reducibility of (5.16) to (5.17), that
means conditions for a and b, we apply the Itô formula5 to the transformation
U(t; x)

dU(t; Xt) =

"
@U

@t
+ a

@U

@x
+
1

2
b2
@2U

@x2

#
dt+ b

@U

@x
dWt: (5.18)

A transformation U exists, if equations (5.17) and (5.18) are the same, that
means if the following conditions for the coe�cients are satis�ed:

@U

@t
(t; x) + a

@U

@x
(t; x) +

1

2
b2(t; x)

@2U

@x2
(t; x) = a1(t)U(t; x) + a2(t) (5.19)

and

b(t; x)
@U

@x
(t; x) = b1(t)U(t; x) + b2(t): (5.20)

5see Appendix C.1
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If we do not specialize at this point, we are not able to calculate much more
further and therefore we restrict ourselves to two cases.

First, we consider the case a1(t) � b1(t) � 0 and denote a2(t) =: �(t)
and b2(t) =: �(t). In order to obtain conditions for a and b it is useful
to di�erentiate equation (5.19) with respect to x and equation (5.20) with
respect to t:

@2U

@t@x
(t; x) +

@

@x

 
a(t; x)

@U

@x
(t; x) +

1

2
b2(t; x)

@2U

@x2
(t; x)

!
= 0 (5.21)

and

b(t; x)
@2U

@t@x
(t; x) +

@b

@t
(t; x)

@U

@x
(t; x) = � 0(t): (5.22)

By means of (5.21) and (5.22) we obtain

� 0(t) = �(t)

"
1

b(t; x)

@b(t; x)

@t
(t; x)� b(t; x)

@

@x

 
a(t; x)

b(t; x)
� 1

2

@b

@x
(t; x)

!#
:

(5.23)
In (5.21) and hence in (5.23) we assumed that the left hand side of (5.19) is
independent of x, in other words, we assumed that �(t) can be determined.
Since � is independent of x we now follow the condition for the determination
of � from equation (5.23)

@f

@x
(t; x) = 0; (5.24)

where

f(t; x) =
1

b(t; x)

@b(t; x)

@t
(t; x)� b(t; x)

@

@x

 
a(t; x)

b(t; x)
� 1

2

@b

@x
(t; x)

!
: (5.25)

If condition (5.24) is satis�ed we are able to determine � and �. Thus con-
dition (5.24) is su�cient for the reducibility of equation (5.16) to the linear
equation

dXt = �(t)dt+ �(t)dWt (5.26)

by means of a transformation U . Integrating equations (5.20) and (5.23) we
obtain the explicit expression

U(t; x) = C exp
�Z t

0
f(s; x)ds

� Z x

0

1

b(t; z)
dz; (5.27)

with an arbitrary constant C.
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The second case to consider is the time-independent case. We want to reduce
the nonlinear autonomous stochastic di�erential equation

dXt = a(Xt)dt+ b(Xt)dWt (5.28)

to the linear stochastic di�erential equation

dYt = (a1Yt + a2)dt+ (b1Yt + b2)dWt; (5.29)

by means of a suitable transformation Yt = U(Xt).

Equations (5.19) and (5.20) simplify to

a(x)
dU

dx
(x) +

1

2
b2(x)

d2U

dx2
(x) = a1U(x) + a2 (5.30)

and

b(x)
dU

dx
(x) = b1U(x) + b2: (5.31)

We assume b(x) 6� 0 and b1 6= 0 and conclude from (5.31)

U(x) = C exp(b1h(x))� b2
b1

(5.32)

with an arbitrary constant C and

h(x) =
Z x

x0

ds

b(s)
: (5.33)

As in the previous case we want to �nd conditions for a and b. There-

fore we substitute (5.32) in (5.30), di�erentiate, multiply with
�
dU
dx

��1
=

b(x)
b1

exp(�b1h(x)) and obtain an expression with only a1 on the right hand
side. Di�erentiating again we get the following condition

b1
dA

dx
(x) +

d

dx

 
b(x)

dA

dx
(x)

!
= 0 (5.34)

with

A(x) =
a(x)

b(x)
� 1

2

db

dx
(x): (5.35)

This condition is satis�ed in the trivial case dA
dx

= 0 for any b1, or in the case

d

dx

0
@ d

dx

�
bdA
dx

�
dA
dx

1
A = 0; (5.36)
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where we assume the choice of b1

b1 = �
d
dx

�
bdA
dx

�
dA
dx

: (5.37)

If b1 6= 0 then we may choose b2 = 0 and use the transformation

U(x) = C exp(b1h(x)): (5.38)

If b1 = 0 we use
U(x) = b2h(x) + C: (5.39)

Now we apply the derived theory to three groups of examples.

Example 1 The stochastic di�erential equation

dXt =
1

2
g(Xt)g

0(Xt)dt+ g(Xt)dWt; (5.40)

where g is a given di�erentiable function, is reducible with the general solu-
tion

Xt = h�1(Wt + h(X0)); (5.41)

with

h(x) =
Z x

x0

ds

g(s)
: (5.42)

In the following we show how to obtain the general solution (5.41). With
the notation of the theory above we see that A(x) = 0, and hence (5.34) is
satis�ed for all b1. We choose b1 = 0, b2 = 1 and obtain

U(x) = h(x) + C:

Inserting U in (5.30) gives a1(h(x) + C) + a2 = 0, and with a1 = 0, a2 = 0,
(5.29) reduces to dYt = dWt with the solution Yt = Y0 +Wt: With C = 0 we
have Yt = h(Xt), especially Y0 = h(X0), and hence obtain (5.41).

We remark that in the special case (5.40) we may �nd a solution in another
more pleasant way. Equation (5.40) is equivalent to the Stratonovich stochas-
tic di�erential equation (for the Stratonovich integral see e.g. [56], p.16, or
[45], x4.9)

dXt = b(Xt) � dWt:
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That means, instead of reducing (5.40) to a linear stochastic di�erential
equation we may integrate the Stratonovich stochastic di�erential equation
directly as well, obtaining (5.41) at once.

Applications of Example 1:

dXt =
1

2
a2Xtdt+ aXtdWt;

Xt = X0 exp(aWt): (5.43)

dXt =
1

2
a(a� 1)X

1�2=a
t dt+ aX

1�1=a
t dWt;

Xt =
�
Wt +X

1=a
0

�a
: (5.44)

dXt = 1dt+ 2
q
Xt dWt;

Xt =
�
Wt +

q
X0

�2
: (5.45)

dXt =
1

2
a2mX2m�1

t dt+ aXm
t dWt ; m 6= 1;

Xt =
�
X1�m

0 � a(m� 1)Wt

�1=(1�m)
: (5.46)

dXt =
1

2
Xtdt+

q
X2
t + 1 dWt;

Xt = sinh(Wt + arcsinhX0): (5.47)

Example 2 The stochastic di�erential equation

dXt =
�
�g(Xt) +

1

2
g(Xt)g

0(Xt)
�
dt+ g(Xt)dWt; (5.48)

with a given di�erentiable function g, is reducible with the general solution

Xt = h�1(�t+Wt + h(X0)); (5.49)

67



where h is given by (5.42).

Again we want to show how (5.49) can be derived. We see A(x) = �, and
hence b1 can be chosen arbitrarily. We choose b1 = 0 and b2 = 1 and obtain

U(x) = h(x) + C:

Inserting U in (5.30) gives � = h(x)a1 + a2; and hence a1 = 0, a2 = �. We
have dYt = �dt + dWt with its solution Yt = �t +Wt + Y0. With C = 0 we
have Yt = h(xt), especially Y0 = h(X0), and we obtain (5.49).

As in the previous example we remark that (5.48) is equivalent to the
Stratonovich stochastic di�erential equation

dXt = �b(Xt)dt+ b(Xt) � dWt;

which can be integrated directly in order to obtain the general solution (5.49).

The applications of example 1 we gave can all be modi�ed to represent ap-
plications to example 2. For instance, consider

dXt =
�
1

2
Xt +

q
X2
t + 1

�
dt+

q
X2
t + 1 dWt;

Xt = sinh(t+Wt + arcsinhX0): (5.50)

Example 3 The stochastic di�erential equation

dXt =
�
�g(Xt)h(Xt) +

1

2
g(Xt)g

0(Xt)
�
dt+ g(Xt)dWt; (5.51)

where g is a given di�erentiable function and h is given by (5.42), can be
reduced to the Langevin equation of the form

dYt = �aYtdt+ bdWt;

with a = �� and b = 1, and has the general solution

Xt = h�1
�
e�th(X0) + e�t

Z t

0
e��sdWs

�
: (5.52)

Again let us show how we derive the solution (5.52). We see A(x) = �h(x)
and by (5.37) we obtain b1 = 0. With b2 = 1 we have

U(x) = h(x) + C:
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Inserting U in (5.30) gives �h(x) = a1h(x)+a2 and hence a1 = � and a2 = 0.
We have dYt = �Ytdt+ dWt with its solution

Yt = e�tY0 + e�t
Z t

0
e��sdWs:

With C = 0 we have Yt = h(Yt), especially Y0 = h(X0), and we obtain (5.52).

The applications of example 1 we gave can all be modi�ed to represent ap-
plications to example 3. For instance, consider

dXt =
�
2a
q
XtXt + 1

�
dt+ 2

q
Xt dWt;

Xt = eat
�
X0 +

Z t

0
e�asdWs

�
: (5.53)

We remark that some examples of nonlinear reducible stochastic di�erential
equations that are not included in the preceding three cases are listed in [45],
p.124-126.

Finally, we again put stress on the fact that the two models (1.4) and (1.5)
considered in chapter 1 are not reducible and cannot be solved explicitly.
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Appendix A

The Kalman-Bucy Filter

A.1 The continuous case

For the Kalman-Bucy �lter in the continuous case we refer to e.g. Kallianpur
[43], x10. In our notation we follow �ksendal [56], x4, pp. 46{68.

A.1.1 The general �ltering problem

Consider

dXt = b(t; Xt) dt+ �(t; Xt) dUt ; (System) (A.1)

dZt = c(t; Xt) dt+ 
(t; Xt) dVt ; (Observations) (A.2)

where U and V are independent Brownian Motions, Ut p-dimensional, Vt
r-dimensional.

The �ltering problem is the following. Given the observations Zs satisfying
(A.2) for 0 � s � t, what is the best estimate X̂t of the state Xt of (A.1)
based on these observations?

To solve this problem we formulate it mathematically. Let Gt be the �-algebra
generated by fZs(�); s � tg, (
;F ; P ) the probability space corresponding
to the (p+ r)-dimensional Brownian motion (Ut; Vt) and

K = fS : 
 7! IRn; S 2 L2(
;F ; P ); S G �measurableg :
\Based on the observations Zs" means that the estimate X̂t is Gt-measurable.
X̂t shall be \the best estimate based on the observations Zs" which means
that

E[jXt � X̂tj2] = inf
S2K

fE[jXt � Sj2]g:
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Let PKt
(Xt) denote the orthogonal projection from L2(
;F ; P ) onto the sub-

space Kt. The following statement holds

X̂t = PKt
(Xt) = E(XtjG) :

We will concentrate on the linear case, which allows an explicit solution in
terms of a stochastic di�erential equation for X̂t. This method is called the
Kalman-Bucy �lter.

A.1.2 The linear �ltering problem

To focus on the main ideas consider only the one-dimensional case

dXt = F (t)Xt dt+ C(t) dUt ; (System) (A.3)

dZt = G(t)Xt dt+D(t) dVt ; (Observations) (A.4)

where the real functions F (t), G(t), C(t), D(t) are bounded on bounded
intervals. Furthermore assume that D(t) is bounded away from 0 on bounded
intervals, Z0 = 0, X0 is normally distributed and independent of fUtg, fVtg
and E[X0] = 0 (see �ksendal [56], p. 48f). The ideas and techniques in the
one-dimensional case can be extended in an analogous way to the multi-
dimensional case.

By means of some technical transformations of PKt(Xt) and calculations we
obtain

The Kalman-Bucy Filter

The solution
X̂t = PKt(Xt) = E(XtjG)

of the linear �ltering problem (A.3), (A.4) satis�es the stochastic di�erential
equation

dX̂t =

"
F (t)� G2(t)S(t)

D2(t)

#
X̂t dt+

G(t)S(t)

D2(t)
dZt ; X̂0 = E[X0] ; (A.5)

where S(t) =E[(Xt � X̂t)
2] satis�es the \Riccati-equation"

dS

dt
= 2F (t)S(t)� G2(t)

D2(t)
S2(t) + C2(t) ; (A.6)

with S(0) =E[(X0�E[X0])
2].
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A.2 The discrete case

For reasons of completeness we again note here the Kalman-Bucy �lter for
the discrete case, as already given in section 3.1.2.

Consider the stochastic system

Xi = DiXi�1 + Si + "i; i = 1; : : : ; n; (System) (A.7)

where fXigni=0 are random d� 1 vectors, fDigni=0 are non-random d� d ma-
trices, fSigni=1 are non-random d�1 vectors, X0 � Nd(x0; V0), "i � Nd(0; Vi),
i = 1; : : : ; n and X0, "1; : : :, "n are stochastically independent. Assume the
observable quantities are Y0; Y1; : : : ; Yn given by

Yi = TiXi + Ui + ei; i = 0; 1; : : : ; n; (Observations) (A.8)

where fTigni=0 are non-random k � d matrices (k � d), fUigni=0 are non-
random k � 1 vectors, ei � Nk(0;Wi) and X0; "1; : : : ; "m; e0; e1; : : : ; en are
stochastically independent, i = 0; 1; : : : ; n.

The Kalman-Bucy �lter

Under some assumptions (see Pedersen [59], pp. 4{5), we have for given
observations y0; y1; : : : ; yn of Y0; Y1; : : : ; Yn

XijY i = yi � Nd

�
�i(y

i);�i
�
; (A.9)

XijY i�1 = yi�1 � Nd

�
Di�i�1(y

i�1) + Si; Ri

�
; (A.10)

YijY i�1 = yi�1 � Nd

�
Ti(Di�i�1(y

i�1) + Si) + Ui; TiRiT
T
i +Wi

�
;(A.11)

where Ri = Di�i�1D
T
i + Vi is positive de�nite, and where

�0(y
0) = x0 + V0T

T
0

�
T0V0T

T
0 +W0

��1
(y0 � T0x0 � U0); (A.12)

�0 = V0 � V0T
T
0

�
T0V0T

T
0 +W0

��1
T0V0; (A.13)

�i(y
i) = Di�i�1(y

i�1) + Si +RiT
T
i

�
TiRiT

T
i +Wi

��1
(yi � Ti

�
Di�i�1(y

i�1) + Si
�
� Ui) ; (A.14)

�i = Ri � RiT
T
i (TiRiT

T
i +Wi)

�1TiRi: (A.15)
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Appendix B

Numerical Methods

In our representation we follow [45], x9 and x10.

B.1 The Euler Scheme

The Euler approximation is a basic discrete time method to approximate an
Itô process. Consider an Itô process X = fX(t); t0 � t � Tg following the
scalar stochastic di�erential equation

dXt = a(t; Xt)dt+ b(t; Xt)dWt;

with t0 � t � T and the initial condition Xt0 = X0. A discretization t0 =
t0 < t1 < : : : < tn < : : : < tN = T of the time interval [0; T ] may be given.
Then a continuous time stochastic process Y = fY (t); t0 � t � Tg with the
initial condition

Y0 = X0;

satisfying the stochastic iterative scheme

Yn+1 = Yn + a(tn; Yn)(tn+1 � tn) + b(tn; Yn)(Wtn+1 �Wtn); (B.1)

for n = 0; 1; : : : ; N � 1, where we denote Yn = Y (tn), is called an Euler
approximation of X. The scheme (B.1) is called the Euler scheme.

With the notations

�n = tn+1 � tn; �Wn = Wtn+1 �Wtn

and
a = a(tn; Yn); b = b(tn; Yn);
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we can write the Euler scheme (B.1) in the impressive form

Yn+1 = Yn + a�n + b�Wn (B.2)

for n = 0; 1; : : : ; N � 1.

In order to compute the sequence fYn; n = 0; 1; : : : ; N � 1g of values of
the Euler approximation we have to generate the random increments �Wn

for n = 0; 1; : : : ; N � 1 of the Wiener process W = fWt; t � 0g. These
increments are independent Gaussian random variables with E(�Wn) = 0
and Var(�Wn) = �n and can be generated by a random number generator
(see e.g. [45], x1.3).
For the multi-dimensional case of the Euler scheme see e.g. [45], x10.2.
Note that when the di�usion coe�cient b is identically zero the stochastic
iterative scheme (B.2) reduces to the well-known deterministic Euler scheme
for the ordinary di�erential equation x0 = a(t; x).

We introduce the notion of strong convergence.

De�nition 1 A time discrete approximation Y � with maximum step size �
converges strongly to X at time T if

lim
�#0

E(jXT � Y �(T )j) = 0:

The rate of strong convergence is crucial if we want to compare di�erent time
discrete approximation methods.

De�nition 2 A time discrete approximation Y � converges strongly with
order 
 > 0 at time T , if there exists a constant C > 0, independent of �,
and a �0 > 0 such that

E(jXT � Y �(T )j) � C �


for each � 2 (0; �0).

Under some regularity assumptions the Euler scheme converges strongly
with order 
 = 0:5 :

Theorem 8 Suppose
E(jX0j2) <1;

E
�
jX0 + Y �

0 j2
� 1
2 � C1 �

1
2 ;

ja(t; x)� a(t; y)j+ jb(t; x)� b(t; y)j � C2jx� yj;
ja(t; x)j+ jb(t; x)j � C3(1 + jxj)
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and
ja(s; x)� a(t; x)j+ jb(s; x)� b(t; x)j � C4(1 + jxj)js� tj 12

for all s; t 2 [0; T ] and x; y 2 IRd. Then

E
�
jXT � Y �(T )j

�
� C5 �

1
2

for the Euler approximation Y �.

For the proof see [45], x10.2. We will compare the Euler method with the
Milstein method described in the next section.

B.2 The Milstein Scheme

By adding to the Euler scheme (B.2) the term

1

2
b b0 [(�W )2 ��]

we obtain the Milstein scheme

Yn+1 = Yn + a�+ b�W +
1

2
b b0 [(�W )2 ��]: (B.3)

If a and b are smoothly enough the Milstein scheme can be shown to
have order of strong convergence 
 = 1:0. In comparison with the Euler
method the strong convergence order is increased from 
 = 0:5 to 
 = 1:0
and we conclude that the Milstein method is an improvement of the Euler
method.

We remark that in the case of the di�usion term b = 0, that is in the deter-
ministic case, the (deterministic) Euler scheme has strong convergence order

 = 1:0. Therefore, as to the order of strong convergence, the Milstein scheme
can be seen as a generalization of the deterministic Euler scheme.
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Appendix C

The Itô Formula

C.1 The one-dimensional case

The function U : [0; T ]� IR 7! IR have continuous partial derivatives @U
@t
,@U
@x

and @2U
@x2

and Xt satisfy the one-dimensional Itô stochastic di�erential equa-
tion

dXt = a(t; !)dt+ b(t; !)dWt;

where
q
jaj and b are in the space L2. De�ne a process Yt by Yt = U(t; Xt)

for 0 � t � T . Then

dYt =

"
@U

@t
(t; Xt) + at

@U

@x
(t; Xt) +

1

2
b2t
@2U

@x2
(t; Xt)

#
dt

+ bt
@U

@x
(t; Xt) dWt;

w. p. 1 for 0 � t � T , and with the notation at = a(t; !); bt = b(t; !).

C.2 The multi-dimensional case

The process Xt satisfy the d-dimensional Itô stochastic di�erential equation

dXt = a(t; !)dt+B(t; !)dWt;

where fWt; t � 0g is an m-dimensional Wiener process with independent
components, Wt = (W 1

t ;W
2
t ; : : : ;W

m
t ), and a : [0; T ]� 
 7! IRd, B : [0; T ]�


 7! IRd�m, satisfying
q
jakj and Bk;j 2 L2 for k = 1; : : : ; d, j = 1; : : : ; m.

76



The function U : [0; T ]� IRd 7! IR have continuous partial derivatives @U
@t
, @U
@xk

and @2U
@xk@xi

for k; i = 1; 2; : : : ; d. De�ne a scalar process fYt; 0 � t � Tg by

Yt = U(t; Xt) = U(t; X1
t ; X

2
t ; : : : ; X

d
t ) w. p. 1. Then

dYt =

2
4@U
@t

+
dX

k=1

akt
@U

@xk
+
1

2

mX
j=1

dX
i;k=1

Bi;j
t B

k;j
t

@2U

@xi@xk

3
5 dt

+
mX
j=1

dX
i=1

Bi;j
t

@U

@xi
dW j

t ;

w. p. 1 for 0 � t � T , where the partial derivatives are evaluated at (t; Xt)
and where we denote akt = ak(t; !), Bi;j

t = Bi;j(t; !).

For an extension of the Itô formula to a wider class of non-smooth functions
we refer to the recently published paper by F�ollmer, Protter and Shiryaev
[26].
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Appendix D

The Radon-Nikodym Theorem

In our notation we follow Billingsley [9], x32.
1) A probability measure � on a �eld F in 
 is called �nite, if �(
) <1.

2) If 
 = A1 [ A2 [ : : : for some �nite or countable sequence of F -sets
satisfying �(Ak) <1, then � is �-�nite.

3) A measure � is absolutely continuous with respect to � if for each A
in F

�(A) = 0) �(A) = 0:

This relation is indicated by � << �. If � << � and � << �, the measures
are equivalent, indicated by � � �.

The Radon-Nikodym Theorem

If � and � are �-�nite measures such that � << �, then there exists a
nonnegative f , a density, such that

�(A) =
Z
A
fd�

for all A in F .

The density f is called the Radon-Nikodym derivative of � with respect
to � and is denoted by d�

d�
.

Note that in the �-�nite case there is a countable decomposition of 
 into
F -sets An for which �(An) and �(An) are �nite. Because of this argument it
is su�cient to treat �nite � and � (see [9], p.444).
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