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Abstract

We commence with an overview of the three most widely used
credit risk models developed by KMV, J.P. Morgan (CreditMetrics) and
Credit Suisse First Boston (CreditRisk+). The mathematical essentials
of each model lie in the way the joint distribution of the so-called ’de-
fault indicators’ is modeled, a vector of Bernoulli random variables.
With the focus on these vectors we will investigate two general frame-
works for modelling such binary random events. We will also show how
the KMV and CreditMetrics methodology can be translated into the
framework of CreditRisk+.

The credit risk models are then compared for ‘homogeneous’ port-
folios using Monte Carlo simulation. As two of the three models use
the multivariate normal distribution for their ‘latent variables’, we in-
vestigate the impact when proceeding to the broader class of elliptical
distributions. A so-called t-model, incorporating a t-copula for the
latent vector, shall be used to show the consequences of a possible gen-
eralisation. In this context we introduce the notion of tail dependence.
Comparison of the extended t-model with the ‘normal’ two credit risk
models will again be performed for the same types of portfolios used
for the previous comparison.

Lastly, we will study the portfolio loss distributions for the various
models due to increased portfolio size.
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Introduction

Consider a portfolio of N loans or bonds subject to default. Managers of such a
portfolio are typically interested in the portfolio value at a certain future time T ,
say one year. There are essentially two possible states a firm can be in after this
time period, default or non-default. Thus we can model the state of each company
i at our time horizon T as a Bernoulli random variable Xi, a so-called ‘default
indicator’, defined by

Xi =
{

1 if firm i is in default at time T
0 else

and pi shall denote the corresponding probability of default, i.e. pi := P [Xi = 1]
for i = 1, . . . , N .

In the event of default, the lender receives only a percentage of the total debt.
This percentage, called the recovery rate, is non-deterministic but depends on the
seniority of the loan or bond. By ri we denote the recovery rate and by Li the loan
size of company i. Then the portfolio loss L at time T is given by

L =
N∑
i=1

Xi(1− ri)Li.

Hence, as soon as we have chosen a multivariate distribution for the random
vector (X1, . . . , XN , r1, . . . , rN ), the overall portfolio loss distribution at T is fully
specified. To date, the dependence among the recovery rates and the default in-
dicators is not understood well enough to structure in a model. Due to this fact,
all three benchmark credit risk models (KMV, CreditMetrics, CreditRisk+) assume
the recovery rates to be independent of each other and independent of the de-
fault indicators (Xi)i as well. This leaves us with the multivariate distribution of
(X1, . . . , XN). All three models attempt to determine this distribution.

From a statistical point of view we are faced with the following three problems,
when modelling losses on credit portfolios:

• dependence among default events

• dimension of the portfolio

• lack of historical data

History has revealed that the assumption of independence among the (Xi)i is far too
strong and would yield very poor and inaccurate results. The number of entities in
a typical credit portfolio varies from a few thousand to a few million. So even for a
very ‘small’ portfolio standard statistical techniques to fit multivariate distributions
are totally inappropriate. The problem that very little historical data is available

v



lies within the nature of credit events and must be accepted. The task of developing
a model which can handle all three problems is indeed a challenge.

In the early 90’s interest in credit risk management rose substantially due to the
temporarily high number of defaults (above historical average) which occurred after
the global economic downturn in the late 80’s. Banks and investment companies
took tremendous losses on their credit portfolios. This empirical knowledge pro-
duces a feature which every credit risk model should be able to incorporate: time
dependent default probabilities.

So far none of the three benchmark models has fulfilled this task. For obvious
reasons it is extremely difficult to develop and especially to calibrate a model,
where the key drivers of default are viewed as stochastic processes. In fact, even
the identification of observable key drivers of default is a difficult task. But it is
crucial to recognize that such a model would automatically give reasonably ‘high’
probabilities to extreme events (such as many simultaneous defaults) in times of a
(global) economic recession.

Although current static credit risk models could incorporate a feature called
‘extremal dependence’, which captures at least some of the desired properties, this
is unfortunately not the case for two of the three benchmark models. We will
develop a possible extension of these models and show the massive impact of this
‘additional dependence’ on the loss distribution of the portfolio.
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Chapter 1

The KMV model

1.1 Overview

KMV uses the well known and understood framework of Merton to model the
asset process of each firm. Viewing equity as a call option on the firms assets, a
relationship can be established between observable market data of the firms equity,
the unobservable asset value and its volatility using the option pricing formula by
Black & Scholes. A so-called ‘distance-to-default’ for every firm is calculated and
using historical data a default probability is assigned. Dependence among default
events is induced through dependent Brownian Motions, the drivers of the asset
process, which yields in multivariate normally distributed asset log-returns. To
estimate the corresponding covariance matrix a factor model is calibrated.

1.2 Setup

For our purposes it is sufficient to consider only companies who’s structures are fairly
easy to deal with. Under the following assumption the essential mathematical parts
of the model will still remain the same.

It is assumed that each firms balance sheet looks as follows:

Balance Sheet

Assets
Equity

Debt

As well it is assumed that all debt Di of company i needs to be serviced at our fixed
time horizon T and remains constant up till T . Additionally we assume the firms
equity to be traded at an exchange.

Seeing two of the three entries in the balance sheet are time dependent, we define
the following processes:

• Ait, the total value of assets of firm i at time t

• Eit, the total market value of equity of firm i at time t
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KMV declares a firm to be in default at time T when the asset value is insufficient
to cover the firms liabilities. This definition yields to the following relationship:

Xi = 1 ⇐⇒ AiT < Di

where the Bernoulli random variable Xi stands for the default indicator of firm i
(as defined in the introduction).

Note that this definition of default allows for the asset value Ait to drop below
Di, as long as t < T . Thus Xi is not dependent on the path of Ait in the time
interval [0, T [.

1.3 Option nature of equity

If a firm goes default the limited liability feature of equity means that the equity
holders have the right but not the obligation, to pay off the debt holders and take
over the remaining assets of the firm. That is, the debt holders essentially own the
firm until their liabilities are paid off in full by the equity holders. Taking again
our fixed time horizon T into account, equity can be viewed as a call option on the
firms assets with strike price equal to the book value of the firms debts (payable at
time T ).

Defining Callit as the value of this particular call option for firm i at time t with
strike Di and maturity T , i = 1, . . . , N , the following relationship holds:

CalliT = max(AiT −Di, 0)
= EiT .

To get analytic results for the pricing formula of Callit, t ∈ [0, T [, KMV uses the
framework of Merton. This approach in conjunction with the option pricing formula
established by Black & Scholes will allow to solve the unobservable current t = 0
asset value of each firm i, Ai0, using the observable market value of the firms equity
Ei0.

1.4 Default probability of a single obligor

1.4.1 The Merton model

Merton tackled the problem of pricing and hedging a European Call option on a
non-dividend paying stock if the stock value followed a geometric Brownian Motion.
If the reader requires more details as a reminder of this section, see [15] and [17].
Under the ‘no-arbitrage’ assumption there exists a unique self-financing trading
strategy which replicates the value of the Call at maturity, assuming trading is
possible in a continuous manner and is only allowed in the stock (the risky asset)
and in a risk-free asset, the bank account. The approach taken by KMV is to apply
the Merton model to the asset value of the firm (consider the asset value of the firm
as the risky asset) and to think of equity as a call option on the assets, as mentioned
in the previous section. The value of the riskless asset at time t we denote by Bt.

Seeing trading is not possible in the firm’s assets, KMV actually violates the
setup proposed by Merton. This fact causes our ‘market’ to be incomplete and
hence there exist infinitely many risk neutral probability measures under which the
discounted asset process is a martingale (see [12]). Each measure is a candidate
for pricing the option and reflects different views and investment opinions of the
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investors. Using the same measure as in the proper Merton setup does not yield in
the ‘correct’ price of the option!

KMV is very well aware of this fact. As we will see later, this approach is only
taken to calculate a default-index called ‘distance-to-default’, which (according to
KMV) has predictive power on upcoming default events and allows to calculate very
accurate marginal default probabilities pi for each firm i.

Henceforth, we assume that continuous trading in the asset value of the firm
is possible. Then the following two differential equations (ordinary and stochastic)
describe the dynamics of the Merton model:

dBt = rBtdt (1.1)
dAit = Ait(µ

A,idt+ σA,idW i
t ) (1.2)

with

(W i
t )t∈[0,T ] = a standard Brownian Motion (BM)

µA,i = const.
∼= drift of the asset value of firm i

σA,i = const.
∼= volatility of the asset value of firm i

r = const.
∼= continuously comp. risk free interest rate

B0 := 1
∼= initial value of bank account

The differential equations (1.1), (1.2) are valid for t ∈ [0, T ], i.e. from this point on
until our fixed time horizon T . (1.1) is solved by integration and (1.2) by using Itô
Calculus. The solutions to the equations are then given by

Bt = exp (rt)

Ait = Ai0 exp
(
µA,it− (σA,i)2

2
t+ σA,iW i

t

)
. (1.3)

Under the ‘no-arbitrage’ assumption if follows that the price of the call option Callit
at any time t ∈ [0, T [ is given by the well known Black-Scholes formula

Callit = AitΦ(di1)−Di exp
(
− r(T − t)

)
Φ(di2) (1.4)

with

di1 :=
log
(
Ait
Di

)
+
(
r + (σA,i)2

2

)
(T − t)

σA,i
√
T − t

di2 := di1 − σA,i
√
T − t

Φ(d) :=
1√
2π

∫ d

−∞
exp

(
−x2

2

)
dx.



4 CHAPTER 1. THE KMV MODEL

1.4.2 Relationship between assets and equity

By joining the results of the last two sections we find that

Eit = AitΦ(di1)−Di exp
(
− r(T − t)

)
Φ(di2) (1.5)

and in particular the current asset value of firm i, Ai0, is determined by

Ei0 = Ai0Φ(di1)−Di exp(−rT )Φ(di2). (1.6)

Applying Itô’s Lemma to equation (1.5) we retrieve the following relationship
between the volatilities at time t = 0:

σE,i(Ei0) =
Ai0
Ei0

σA,iΦ(di1) (1.7)

=: σE,i, i = 1, . . . , N

Given an estimate of σE,i using historical data of the firms equity prices we can now
solve (1.6) and (1.7) simultaneously for the unknown current asset value Ai0 of firm
i and it’s volatility σA,i. Note that the drift term µA,i does not appear anymore
in those two equations. The reason lies within the risk neutral valuation principle
used by Black & Scholes to price the Call option (see [12]).

From a probabilistic point of view the key driver of default, the asset value
process Ait is almost fully described. The only unknown parameter in (1.3) is the
drift term µA,i. If there is historical asset value data available, then µA,i can
be estimated empirically. Otherwise it is not clear what kind of value should be
considered. Now we assume the parameter to be set. Then the default probability
pi can be calculated as follows:

pi = P [AiT < Di]

= P

[
Ai0 exp

(
µA,iT − (σA,i)2

2
T + σA,iW i

T

)
< Di

]

= P

W i
T <

log
(
Di
Ai0

)
+
(

(σA,i)2

2 − µA,i
)
T

σA,i


= P

[
Zi <

log
(
Di
Ai0

)
+
(

(σA,i)2

2 − µA,i
)
T

σA,i
√
T︸ ︷︷ ︸

=:−DDi

]
, Zi ∼ N (0, 1) (1.8)

We call the quantile−DDi the default point of firm i and KMV defines the ‘distance-
to-default’ of company i as DDi.

1.4.3 Actual default probabilities

As already pointed out before, KMV uses the Black-Scholes formula for option
pricing only to calculate the ‘default’ index DDi for each firm i. Seeing the Merton
setup is violated (assets of companies are not tradeable), the corresponding default
probabilities pi given by (1.8) are anyhow wrong. KMV uses the (DDi)i to estimate
‘actual’ default probabilities. For each company i historical data is used to search
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for all companies which at one stage in their history had (approximately) the same
distance-to-default as firm i. Then the observed default frequency is converted
into an actual probability p̂i. KMV names the (p̂i)i Expected Default Frequencies
or EDF’s. This estimation procedure is valid since all (−DDi)i are quantiles of
the same distribution (by (1.8)). To incorporate this correction of the theoretical
marginal default probability of each entity in our portfolio, we simply adjust the
distances-to-default such that they meet the actual EDF’s, i.e. for i = 1, . . . , N find
(D̂Di) which yields

P [Zi < −D̂Di] = p̂i

= Φ−1(−D̂Di).

1.5 The joint default distribution

Dependence between the default indicators (Xi)i is induced by making the asset
value processes

(
(Ait)t∈[0,T ]

)
i

dependent. To do this the following fact is used:
∀M ∈ N,

(
(W j

t )t∈[0,T ]

)
j=1,... ,M

standard and independent BM’s and for constant
weights (cj)j the sum

M∑
j=1

cjW
j
t

is still a BM. So lets fix the integer M and consider the following stochastic differ-
ential equations for the asset processes:

dAit = Ait

µA,idt+
M∑
j=1

σA,ij dW j
t

 , i = 1, . . . , N (1.9)

or equivalently in vector notation (x := (x1, . . . , xN )T )

dAt = At(µ
Adt+ σAdW t). (1.10)

By comparing (1.10) with (1.2) we can almost guess what the solution of (1.9) must
look like:

Ait = Ai0 exp

µA,it− (σA,i)2

2
t+

M∑
j=1

σA,ij W j
t

, i = 1, . . . , N, (1.11)

where σA,i is defined as

(σA,i)2 :=
M∑
j=1

(σA,ij )2.

Using equation (1.11) the event of default is now described by
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AiT < Di ⇐⇒
M∑
j=1

σA,ij W j
T < log

(
Di

Ai0

)
+
(

(σA,i)2

2
− µA,i

)
T

⇐⇒
M∑
j=1

σA,ij Ej <
log
(
Di
Ai0

)
+
(

(σA,i)2

2 − µA,i
)
T

√
T

, (Ej)j iid∼ N (0, 1)

⇐⇒
∑M

j=1 σ
A,i
j Ej

σA,i
<

log
(
Di
Ai0

)
+
( (σA,i)2

2 − µA,i
)
T

σA,i
√
T

⇐⇒
∑M

j=1 σ
A,i
j Ej

σA,i
< −DDi.

Defining Zi :=
∑M
j=1 σ

A,i
j Ej

σA,i we can conclude that Z ∼ N (0,Σ), V ar(Zi) = 1 ∀i, and
the correlation matrix Σ is given by

[Σ]ij =
∑M

s=1 σ
A,i
s σA,js

σA,iσA,j
. (1.12)

The remaining task is the estimation of M and Σ. It is straightforward to calculate
that

Corr

(
log
(
Ait
Ais

)
, log

(
Ajt

Ajs

))
=
∑M
k=1 σ

A,i
k σA,jk

σA,iσA,j
(1.12)

= [Σ]ij .

Hence the (Zi)i represent standardized asset log-returns.
In practice we face the following problems when estimating the pairwise asset

log-return correlations:

• lack of historical data on asset values

• computational burden: for N loans N
2 (N −1) correlations must be estimated.

Impossible task if N is as large as one thousand or more

• the estimated correlation matrix will almost surely not be positive definite, but
positive definiteness is needed to simulate multivariate normally distributed
random variables and hence to simulate the portfolio loss distribution.

A way around these problems is to impose a certain structure on the correlation
matrix Σ. The idea is to view K of the M BM’s (K�M) as so-called key drivers of
default (interpretable as non-observable macro-economic variables) common to all
companies. Plus we assume that every company has its own idiosyncratic (company-
specific) risk driver which is independent of all other risks. Translated to model of
KMV this yields M = K+N , where σA,ij = 0 ∀j > K, j 6= i. Hence the correlation
matrix is given by

[Σ]ij =


∑K

s=1 σ
A,i
s σA,js

σA,iσA,j
i 6= j∑K

s=1(σA,is )2 + (σA,iK+i)
2

(σA,i)2
i = j.
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An easy calculation shows that Σ is of the form AAT + D with [A]ij = aij a
(N ×K)-matrix and [D]ij = dij a diagonal (N ×N)-matrix given by

aij =
σA,ij

σA,i

dij =


(
σA,iK+i

σA,i

)2

i = j

0 i 6= j.

Using the nice properties of the Gaussian distribution we immediately see that Z
can be represented as

Zi
d=

K∑
j=1

aijRj + Ei i = 1, . . . , N (1.13)

where

{(Rj)j , (Ei)i} independent (1.14)
Rj ∼ N (0, 1), j = 1, . . . ,K
Ei ∼ N (0, dii), i = 1, . . . , N.

(1.13) is (for obvious reasons) called a factor model. The (Rj)j stand for the risk
factors common to all firms and Ei is the idiosyncratic (firm-specific) risk factor
which only influences company i. (1.14) can even be relaxed (without loss of gener-
ality) to multivariate normally distributed risk factors (Rj)j with standard normal
marginals (key: Cholesky decomposition).

To calculate Σ we need to specify A and D. This is done by identifying the
common factors (Rj)j . KMV proposes to take observable country, industry and
global economic factors. To fit those into our factor model we assume that their
log-returns are multivariate normally distributed.

1.6 The loan-loss distribution

By assuming some simplifying assumptions to the loan portfolio a closed form
asymptotic portfolio loss distribution can be derived, asymptotic in the sense of
letting the number of loans N tending to infinity. The core assumptions are the
following:

• all loans mature at time T

• all loans have equal dollar amount

• all companies have the same marginal default probability, i.e. pi = pj =:
p ∀i, j = 1, . . . , N

• the asset log-returns are equicorrelated, i.e. [Σ]ij = ρ ∀i 6= j

When interpreting the default indicator Xi as the gross loss before recovery on
the i-th loan KMV derives analytically the asymptotic distribution of the portfolio
percentage gross loss L which is defined as
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L =
1
N

N∑
i=1

Xi.

Now we focus on calculating the distribution of L, i.e. the probabilities

P

[
L =

k

N

]
k = 0, 1, . . . , N .

Leaving the details aside KMV shows that

L
d−→ L for N →∞, L ∼ NI(ρ, p)

where NI(a, b) denotes the normal-inverse distribution with parameters a, b. The
normal-inverse cumulative distribution function NI is defined as

NI(x; a, b) = Φ
(

1√
b

(√
1− bΦ−1(x) − Φ−1(a)

))
.

KMV points out that this limiting distribution also describes the loss distri-
bution of a large, diversified and heterogeneous portfolio very well. At this point
it is not quite clear how KMV derives the portfolio loss distribution. By the au-
thor’s understanding the normal inverse distribution is directly calibrated to the
heterogeneous portfolio using a special technique to estimate the parameters a, b.
The correlation matrix Σ is only needed for portfolio management purposes, i.e.
analysis of the portfolio structure and risk concentrations.



Chapter 2

CreditMetrics (CM)

2.1 Overview

The framework established by J.P. Morgan to evaluate bond portfolios is based on
a rating system model. Changes in portfolio value are only related to the even-
tual migration in credit quality of each obligor, both up and downgrades, as well
as default. Assuming interest rates to behave deterministically, each bond at our
time horizon is re-valued, using the zero-curve corresponding to the bond’s rating
category. Transition probabilities are estimated using historical data and under the
assumption of stationarity. Dependence between credit migration of different com-
panies arises as with the KMV model when the firms asset values are represented by
correlated geometric Brownian Motions. To estimate asset log-return correlations
again a factor model is applied.

2.2 Rating systems and transition probabilities

The core ingredient to the model is the mapping of firms to a rating system. This
categorisation consists of D classes A1, . . . , AD. The first D−1 groups describe the
possible non-default states of the firms. When declared default a company falls into
class AD. Out of the D − 1 rating categories, we take A1 as the one characterising
the highest credit quality and AD−1 as the lowest.

We will see that the CM framework allows without any additional difficulties for
a multi-period model. We are interested in the portfolio value at the time horizons
T = ∆t, 2∆t, . . . . Credit migration, i.e. a company moving from one credit quality
Aj to another Ak will only be allowed at the time horizons (n∆t)n≥1. By Xn

i we
denote the rating (state) variable of company i at time n∆t, n ∈ N, taking values
in {1, . . . , D}.

Example 2.1. A rating table proposed by Standard & Poors is

A1 = AAA A4 = BBB A7 = CCC
A2 = AA A5 = BB A8 = Default
A1 = A A6 = B

The companies are re-rated typically every year, i.e. T = 1.

The following assumptions stated by J.P. Morgan are the core assumptions of
the CM model:

• all bond issuers are credit-homogeneous within the same rating class, i.e. they
share the same transition probabilities at all times n∆t, n ≥ 1.
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• the transition probability of every firm depends only on the rating category
the company is in now.

• the transition probabilities are stationary, i.e. not time dependent.

Mathematically speaking these three assumptions yield

1. Xn
i = Xn

j =⇒ P [Xn+1
i = Ak] = P [Xn+1

j = Ak] ∀i, j, k

2. P [Xn+1
i = Akn+1 |Xn

i = Akn ] = P [Xn+1
i = Akn+1 |Xn

i = Akn , . . . , X
0
i = Ak0 ]

3. P [Xn+1
i = Akn+1 |Xn

i = Akn ] = P [Xn
i = Akn+1 |Xn−1

i = Akn ].

If we define pnjk = P [Xn+1
i = Ak|Xn

i = Aj ], the above mentioned 3rd assumption
gives pnjk = pn+1

jk =: pjk ∀j, k = 1, . . . , D.
We conclude that if the processes (Xn

i )n≥0 are viewed independently of each
other, then the ’state’-process of each firm i describes a Markov-process with state
space {1, . . . , D} and transition matrix [pjk]jk. Thus by the Lemma of Chapman-
Kolmogorov (see [20], pages 72–74) the transition matrix from now to t = m∆t
equals [pjk]m, i.e., the m-th power of the one-decade matrix [pjk].

2.3 Valuation of a single bond

Since the CM framework models the portfolio value and not portfolio losses only it
allows for future increases in portfolio value as well. If an obligor’s credit quality
improves during [0, T ], i.e. moves at time T up into a better rating class, then his
bond yield spread over Treasury will tighten and hence his bond value will increase.
The same argument holds for credit quality deterioration, but values will move in
the opposite direction.

We will take the following three steps to derive a valuation technique of a single
bond subject to default: specification of the credit risk horizon T , definition of the
forward pricing model and derivation of the forward distribution of changes in bond
value.

2.3.1 The credit risk horizon

The risk horizon can be chosen arbitrarily (typically 1 year), but must be consistent
with the specified transition matrix. That is, if our transition matrix gives the rating
transition distribution from today till ∆t, then the risk horizon T must be an integer
multiple of ∆t, i.e. ∃m ∈ N : T = m∆t.

2.3.2 The forward pricing model

Seeing interest rates are assumed constant, the only uncertainty in the future bond
value comes from possible credit-migration. Thus the valuation of a bond is derived
from the zero-curve corresponding to the rating of the issuer. Since there are D− 1
possible credit qualities apart from ’default’, D − 1 spread curves are required to
price the bond in all possible states, all obligors within the same rating class being
marked-to-market with the same curve (according to assumption (1)). If our time
horizon T is measured in years, then we will need the forward zero-curve T years
ahead, which is then applied to the residual cash flows of the bond from T years to
the maturity of the bond.

In case of default, the value of the instrument is set at a percentage, the recovery
rate, of the face value of the bond. The recovery rate is assumed to follow a Beta
distribution. The parameters are estimated using historical data of defaulted bonds
for all seniority classes.
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2.3.3 Forward distribution of changes in bond value

Given the possible future time T values of the bond for all states and under the
assumption that our bond is at the moment in rating category Aj , the forward
distribution of changes in bond value is given by

∆V Tjk := V Tk − V Tj with probability pjk,

where V Tk stands for the value of our bond at time T in rating category Ak.

2.4 Valuation of a bond portfolio

To generate dependence among credit events, J.P. Morgan takes the same approach
for modelling the asset processes as KMV. Calculations in the previous chapter
have suggested, that the asset log-returns of the firms follow a multivariate normal
distribution. Again without loss of generality we can assume the margins to be
standard normal. At this point we encounter two problems:

1. how to merge the information of the transition probabilities with the multi-
variate asset log-return distribution?

2. how to estimate the asset log-return correlation matrix Σ?

Question number one is easily answered. We only need to slice the x-axis under
the marginal standard normal distribution for every firm i into bands, each band
standing for a rating category after a possible rating migration, such that when we
draw a possible asset log-return of firm i randomly, the probability of the variate
to lie within a band is equal to the companies migration probability to the corre-
sponding rating grade. That is, if the rating of company i today is Aj , i.e. X0

i = j
and we know that the probability of moving to rating grade Ak at time T is given
by pjk, we then choose D − 1 thresholds Zjl ∈ R, Zjl < Zjl+1, l = 1, . . . , (D − 1) so
that

P [XT
i = k] = pjk = Φ(Zjk+1)− Φ(Zjk).

Because the obligors within one rating class are taken to be ex-changeable (by
assumption (1)), we don’t need to choose D − 1 thresholds for every obligor i but
only for every non-default rating class Al, l = 1, . . . , (D − 1). We assume that if a
company once defaulted in the past, it remains default, i.e. stays in the rating class
AD (i.e. pDD = 1).

To estimate the asset log-return correlation matrix J.P. Morgan also uses a
factor model. Calibrating is done by taking country and industry equity indices as
common factors. As before it is assumed that the log-returns of these indices follow
a multivariate normal distribution.





Chapter 3

CreditRisk+ (CR+)

3.1 Overview

In statistics the framework of CR+, developed by Credit Suisse First Boston (CSFB),
is known as a mixture type model. The default indicator Xi of each firm i is taken
conditionally independent on its Bernoulli parameter pi, where pi itself is random
and described by a factor model. Correlation among default events is induced by
dependence of the (pi)i on a set of common factors. Instead of simulating the
portfolio loss distribution an analytic approach is taken. By discretization of the
losses given default, which are assumed to be independent of the default events, the
probability generating function of the portfolio losses can be approximated.

3.2 Setup

As in the previous models we describe the state of company i at our time horizon
T by the Bernoulli random variable Xi, where

Xi =
{

1 if firm i is in default at time T
0 else.

and P [Xi = 1] = pi. The Bernoulli parameter pi is taken stochastic as well and the
(Xi)i conditionally independent on these parameters. That is

(Xi | p1 . . . pn)i independent ∼ Ber(pi).

It is assumed that there exist K risk factors R1, . . . , RK which describe the vari-
ability of the default probabilities pi. These factors are taken to be independent
Gamma distributed. The link between the (pi)i and the (Rj)j is given by the
following factor model:

pi = p̄i

K∑
j=1

aijRj , i = 1, . . . , N (3.1)

and

(Rj)j independent ∼ Gam(1, σ2
j )

K∑
j=1

aij = 1 ∀i.
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It is clear that the factor loadings aij measure the sensitivity of obligor i to
the risk Rj . Seeing E(pi) = p̄i, p̄i stands for an average default probability over
any time period [0, T ] of obligor i and thus could be estimated easily if obligor
i was mapped to any credit rating system. Of course this last statement is only
valid under the assumption of stationary default probabilities with respect to time
(within each rating class). But this is implicitly assumed in the way the factor
model is set up.

In CR+ the loss given defaults (LGDi)i are modeled as a constant fraction of
loan size and the loss exposure amounts are expressed as an integer multiple of a
fixed base unit of loss (e.g. one million dollars). We define ∀i = 1, . . . , N

Li := loan size of obligor i
λi := expected percentage loss given default, (∈]0, 1[)

= 1− expected recovery rate
v0 := base unit of loss.

Then we have that

LGDi = λiLi

≈ viv0 vi ∈ N,

if vi is given by

vi := round
(
λiLi
v0

)
.

vi stands for the nearest integer value to λiLi
v0

. Now every LGD can be expressed
(approximately) as a fixed multiple of a predefined base unit of loss.

Because of the fact that for any discrete random variable it’s distribution func-
tion and its probability generating function (pgf) contain the same amount of in-
formation, it makes sense to calculate whichever is easier to handle. In this case
CSFB chose the second possibility which will allow for an approximate analytical
result for the portfolio loss distribution.

In the next section a brief introduction to pgf’s is given with their relevant
properties, which shall be used when deriving the portfolio loss pgf.

3.3 Introduction to probability generating func-
tions

For our further investigation on CR+ we will only need to deal with non-negative
integer valued random variables, for which we now will give some properties of their
pgf’s.

In this section the random variables X,Y are assumed to take non-negative,
integer values only. On their distribution itself we do not impose any conditions.

Definition 3.1. The pgf of X is defined as GX(s) = E(sX) =
∑

i s
iP [X = i].

From the definition it immediately follows that

P [X = k] =
1
k!
G

(k)
X (0), k ∈ N0. (3.2)
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We see that given the pgf of a random variable allows easy derivation of it’s distri-
bution. Here are two examples of pgf’s, which we will meet again later on in this
chapter:

Example 3.1.

1. Bernoulli random variable. If P [X = 1] = p and P [X = 0] = 1− p then

GX(s) = 1 + p(s− 1). (3.3)

2. Poisson random variable. If X has a Poisson distribution with parameter λ
then

GX(s) =
∞∑
k=0

sk
λk

k!
exp(−λ) = exp

(
λ(s− 1)

)
. (3.4)

The following two properties will appear to be very useful:

Proposition 3.1.

1. X, Y two independent random variables. Then

GX+Y (s) = GX(s)GY (s)

2. Let GX|Y (s) be the pgf of X |Y and Y ∼ F . Then

GX(s) =
∫
GX|Y=y(s)F (dy).

Proof.

1. X,Y independent =⇒ sX , sY independent =⇒ E
[
sX+Y

]
= E

[
sX
]
E
[
sY
]

2. GX(s) = E[sX ] =
∫
E[sX |Y = y]F (dy) =

∫
GX|Y=y(s)F (dy)

3.4 Calculation of the portfolio loss pgf

First we derive the conditional pgf of Z := X1 + . . .+XN given R = (R1, . . . , RK),
where Z stands for the total number of defaulted portfolio entities at time T and the
(Xi)i for the default indicators. We know that given R, the (Xi)i are independent
∼ Ber(pi). Hence by (3.3) their pgf is

GXi|R(s) = 1 + pi(s− 1), i = 1, . . . , N.

At this point CSFB approximates each pgf GXi|R(s) using a Taylor series expansion
of the function log(1 + x) = x+ O(x2) at x0 = 0. Thus

GXi|R(s) = 1 + pi(s− 1)

= exp
(

log
(
1 + pi(s− 1)

))
≈ exp

(
pi(s− 1)

)
for pi ≈ 0, s ≈ 1. (3.5)

Now if we compare (3.5) with (3.4) we conclude that this approximation is equal
to saying the (Xi)i were Pois(pi) distributed. That’s why this approximation is
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called the Poisson approximation. For further calculations the CR+ model regards
the (Xi)i as Poisson distributed random variables. The idea is that as long as pi
is small, we can ignore the constraint that a single obligor i can default only once
(seeing the probability of defaulting ’twice’ or even more within the time interval
[0, T ] is very small). Note that the exponential form in (3.4) of the Poisson pgf will
be essential to the computational facility of the model!

Conditional on R, the (Xi)i are independent. In conjunction with proposition
3.1 it follows that

GZ|R(s) = GX1|R · · ·GXN |R

=
N∏
i=1

exp
(
pi(s− 1)

)
= exp

(
µ(s− 1)

)
, µ :=

N∑
i=1

pi.

Using (3.1) and the fact that the (Rj)j are independent Gamma distributed we
calculate the unconditional pgf of Z. fj(x) will stand for the probability density
function of the Gamma random variable Rj .

GZ(s) =
∫
R+
· · ·
∫
R+
GZ|R=(x1,... ,xK)(s)f1(x1) · · · fK(xK)dx1 · · · dxK

=
∫
R+
· · ·
∫
R+

exp

 N∑
i=1

p̄i K∑
j=1

aijxj

 (s− 1)

 f1(x1) · · · fK(xK)dx1 · · · dxK

=
∫
R+
· · ·
∫
R+

exp

(s− 1)
K∑
j=1

(
N∑
i=1

p̄iaij

)
xj

 f1(x1) · · · fK(xK)dx1 · · · dxK

=
∫
R+
· · ·
∫
R+

exp
(
(s− 1)µ1x1

)
f1(x1)dx1 · · · exp

(
(s− 1)µKxK

)
fK(xK)dxK

=
K∏
j=1

(
1− δj
1− δjs

) 1
σ2
j
, δj :=

σ2
jµj

1 + σ2
jµj

and µj :=
N∑
i=1

p̄iaij

Now let’s take a look at the loss contribution of obligor i, Lossi, to the overall
portfolio loss measured in base units v0. Given R he adds

Lossi|R = viXi, vi := round

(
λiLi
v0

)
.

Because the (Xi|R)i are independent it follows immediately that the (Lossi|R)i are
independent as well. So given the pgf of Lossi|R, which is

GLossi|R(s) = GXi|R(svi), (3.6)

we get, conditional on R, for the overall portfolio loss pgf GLoss|R(s) (again using
proposition 3.1)
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GLoss|R(s) =
N∏
i=1

GLossi|R(s)

(3.6)
=

N∏
i=1

GXi|R(svi)

= exp

 K∑
j=1

Rj

(
N∑
i=1

p̄iaij(svi − 1)

) .

As before, the unconditional total portfolio loss pgf is attained by integrating out
the risk factors Rj . This yields

GLoss(s) =
K∏
j=1

(
1− δj

1− δjPj(s)

) 1
σ2
j
, Pj(s) :=

1
µj

N∑
i=1

p̄iaijs
vi .

To calculate the probability of incurring a portfolio loss of l standard units v0 we
simply use (3.2). The CR+ manual [4] provides an easy to calculate recurrence
relationship for l = 0, 1, . . . .

3.5 Mixed Poisson distributions

At a first glance at the CR+ model one might ask why the default volatility drivers
(Rj)j are taken to be Gamma distributed? This assumption was made because the
model was developed using a Poisson approximation technique common in insurance
mathematics.

Once again we take a closer look at the overall number of defaults described
by the random variable Z =

∑N
i=1 Xi. To evaluate P [Z = m] easily, we apply

again the previously mentioned Poisson approximation, i.e. (Xi|R)i independent
∼ Pois(pi

(
R)
)
. Thus

P [Z = m|R] =
λm(R)
m!

exp
(
λ(R)

)
with

λ(R) :=
N∑
i=1

pi(R) =
N∑
i=1

p̄i

K∑
j=1

aijRj . (3.7)

By rearranging the order of summation in (3.7) we can also write

λ(R) =
K∑
j=1

µjRj , µj :=
N∑
i=1

p̄iaij .

Now consider K random variables Zj

(Zj |R)j independent, Zj|R ∼ Pois(µjRj).
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Obviously, Z and
∑K

j=1 Zj have the same conditional and hence the same uncondi-
tional distribution, i.e.

Z
d=

K∑
j=1

Zj .

We notice that the (Zj)j are even unconditionally independent, as each Zj depends
only on Rj and these are independent. Moreover, each Zj , j = 1, . . . ,K has by
construction a mixed Poisson distribution with parameter µjRj such that the total
number of defaults in the portfolio is equal in distribution to a sum ofK independent
mixed Poisson distributed random variables.

At this stage CSFB models the (Rj)j as Gamma random variables, to ensure
that an analytic derivation of the distribution of Zj is possible. Then Zj has a
Negative Binomial distribution (for all j = 1, . . . ,K) when integrating out the
conditional Gamma distribution. This result is well known in the field of actuarial
mathematics. Thus Z can be represented as the sum of K independent Negative
Binomial distributed random variables and hence its pgf can be calculated easily,
as already seen.

3.6 Sector analysis & factor models

If the portfolio is broken down into different groups of obligors, say by industry
sectors and by rating categories, then the factors Rj , j = 1, . . . ,K, can be ’made’
portfolio specific, i.e. one can estimate the variances σ2

j .
Assuming homogeneity in default behaviour for all firms in the same rating

class, we can estimate the average long term default frequency and also the average
default volatilities (σj)j using historical data. We also need to fix the weightings
wij , which represent our judgement of the extent to which the state of sector j
(country or industry specific) influences the fortunes of obligor i. Then the factor
model (3.1) imposes the following relationship between the variances (σ2(X) stands
for the variance of X):

σ2(pi) = p̄2
i

K∑
j=1

a2
ijσ

2(Rj) i = 1, . . . , N. (3.8)

If we define Ui := σ2(pi)
p̄2
i

, Vj := σ2(Rj) the equivalent vector equation to (3.8) is
U = AV , [A]ij = a2

ij , and hence an ordinary least square solution is given by

(ATA)−1ATU = V if Rank(A) = K, K < N.



Chapter 4

Summary of the models

From a mathematical point of view, the KMV and the CM model are the same if
we restrict CM to model only the portfolio losses and if the one-period version is
considered only. Both approaches model the asset log-returns using a multivariate
normal distribution, declaring a firm to be in default at time T if the asset value
(at time T ) has fallen beneath a certain threshold or equivalently when the stan-
dardised asset log-returns have taken values below the default point −DD. The
only difference between the two models is how the distances-to-default (DDi)i are
calculated. While KMV establishes a relationship to option pricing J.P. Morgan
uses their rating system. Even estimation of the asset log-return correlation matrix
is performed in the same manner, namely by using a factor model.

Because of this mathematical equivalence of the two frameworks we will not
distinguish between the two models anymore for the rest of this study. From now
on we will focus on the comparison of the KMV/CM and the CR+ model.

Throughout the paper, whenever we investigate one of the ‘two’ methodologies,
the following notation will be used:

• KMV/CM

Z = standardised asset log-returns
∼ N (0,Σ), Σ = correlation matrix

Zi =
K∑
j=1

aijRj + Ei (factor model)

Xi = default indicator of firm i

= I{Zi<DDi} = I{Zi<Φ−1(pi)}

pi = default probability of firm i over time period [0, T ]

• CR+

Xi = default indicator of firm i, (Xi|pi)i indep. ∼ Ber(pi)

pi = p̄i

K∑
j=1

aijRj (factor model),
K∑
j=1

aij = 1 ∀i

p̄i = default probability of firm i over time period [0, T ]

Both, the KMV/CM and the CR+ methodologies have one thing more in com-
mon. They all model the loss given default’s (LGDi)i independently of the default
events. So for any further investigations on the structure of the models it actually
suffices to analyze the joint distribution of the default indicators (Xi)i.
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We have chosen the same notation for some of the random variables and parameters
for both models (such as the default indicators (Xi)i) to emphasize the structures
of the models. Note, that from a mathematical point of view they do not have
anything in common. Whenever it is not quite clear which random variables or
parameters of what model we are talking about, we write for example XKMV

i or
XCR
i instead of Xi. Some of the letters used for these random variables shall be

used later on in other contexts and should not be interpreted as in the summary of
the models, unless explicitly mentioned.



Chapter 5

Modelling dependencies

In this chapter we will discuss all relevant topics on dependence among random
variables needed for further investigation on the models. Seeing factor models have
come up in all three credit risk models, we will first take a short look at those.
In the following section copulas will be introduced, which allow breaking down a
multivariate distribution into its margins and dependence structure. Then we shall
discuss two very general ways of modeling multivariate binary (Bernoulli) random
outcomes, seeing KMV,CM and CR+ only focus on modelling the multivariate
Bernoulli default events (Xi)i and the loss given defaults are independent of the
default events.

5.1 Factor models

Factor analysis is a mathematical model which attempts to explain the correlation
between a large set of variables in terms of a small number of underlying factors. A
major assumption of factor analysis is that it is not possible to observe these factors
directly; the variables depend upon the factors but are also subject to random errors.

5.1.1 Setup

Let Z = (Z1, . . . , Zn)T be a random vector with mean µ and covariance matrix Σ.
Then we say that the k-factor model holds for Z (k�n) if Z can be written in the
form

Z = AR+ E + µ, (5.1)

where A is a non-random (n×k)-matrix, R = (R1, . . . , Rk)T and E = (E1, . . . , En)T

are random vectors. The (Rj)j are called common factors and the (Ei)i specific or
unique factors. It is additionally assumed that

E[Rj ] = 0 ∀j, Cov[Ri, Rj ] = δij

E[Ei] = 0 ∀i, Cov[Ei, Ej] = ψ2
i δij

Cov[Rj , Ei] = 0 ∀i, j

and denote the covariance matrix of E by Ψ = diag(ψ2
1 , . . . , ψ

2
n). δij stands for

the Kronecker function. By definition all of the factors are uncorrelated and the
common factors are each standardised to have variance 1.

The validity of the k-factor model can be expressed in terms of a simple condition
on Σ without imposing any restricions on the distribution of Z.
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Theorem 5.1. A k-factor model holds for Z = (Z1, . . . , Zn), k < n if and only if

∃A,Ψ : Σ = AAT + Ψ (5.2)

where A = (n× k)−matrix, Rank(A) = k and Ψ is of the form diag(ψ2
1 , . . . , ψ

2
n).

Proof. see [19]

5.1.2 Factor models applied to credit risk

The first step when deriving a factor model is to estimate the covariance matrix
Σ out of a set of m independent observations Ẑ1, . . . Ẑm of the vector Z. Then we
would try to estimate A,Ψ and the distributions of the factors (mostly chosen to
be multivariate normal). The models proposed by KMV and J.P. Morgan follow
a different approach: the factor models are used to produce the covariance (in our
case correlation) matrix. The matrix A is statistically estimated by identifying
observable risk factors (Rj)j and the unexplainable random noise is incorporated in
Ψ. Even the major assumption in classical factor analysis of unobservable common
factors is violated.

As we see, the estimation procedure is not a standard technique in classical
factor analyis.

As in most other cases the multivariate normal distribution plays again an
exceptional role also with factor models. It is straight forward to check that if
Z ∼ N (µ,Σ) and Σ is of the form AAT + Ψ, then the easiest possible factor
model is retrieved by setting the factors R1, . . . Rk iid ∼ N (0, 1), (Ei)i independent
∼ N (0, ψ2

i ), {Rj , Ei}i,j independent.
So all factors can be chosen to be normally distributed and most of all inde-

pendent among each other. This is due to the fact that multivariate normally
distributed random variables with zero correlation are independent. We will use
this property later on explicitly.

5.2 Copulas

Consider n continuous real-valued random variables Z1, . . . , Zn with marginal dis-
tribution functions F1, . . . , Fn. Their dependence is completely described by their
joint distribution function

F (z1, . . . , zn) = P [Z1 ≤ z1, . . . , Zn ≤ zn].

The idea of separating F into a part which describes the dependence structure
and parts which contain all information on the marginal behaviour, has led to the
concept of a copula.

Definition 5.1. An n-copula is the distribution function of a random vector in
Rn with uniform−(0, 1) marginals or equivalently an n-copula is any function C :
[0, 1]n → [0, 1] which has the following three properties:

1. C(x1, . . . , xn) is increasing in each component xi

2. C(1, . . . , 1, xi, 1, . . . , 1) = xi, ∀i ∈ [1, . . . n], xi ∈ [0, 1]

3. ∀ (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n with ai ≤ bi we have

2∑
i1=1

. . .
2∑

in=1

(−1)i1+...+inC(x1i1 , . . . , xnin) ≥ 0 (5.3)

where xj1 = aj, xj2 = bj ∀j ∈ {1, . . . n}
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The sum (5.3) can be interpreted as P [a1 ≤ X1 ≤ b1, . . . , an ≤ X1 ≤ bn]. The
following proposition will give the link between copulas and joint distribution func-
tions:

Proposition 5.1. Let X be a random variable with distribution function G. Let
G−1 be the quantile transform of G, i.e. G−1(α) = inf{x|G(x) ≥ α}, α ∈]0, 1[.
Then

1. If U ∼ Unif(0, 1) we have G−1(U) ∼ G

2. If G is continuous, then G(X) ∼ Unif(0, 1)

Proof. See [21], page 59.

We conclude that Fi(Zi) ∼ Unif(0, 1). Seeing the (Fi)i are strictly monotone
increasing on [0, 1] we can rewrite (5.2) as

F (z1, . . . , zn) = P [F1(Z1) ≤ F1(z1), . . . , Fn(Zn) ≤ Fn(zn)]
=: C(F1(z1), . . . , Fn(zn)). (5.4)

The following Theorem by Sklar states that C is indeed a distribution function
on [0, 1]n and even states a uniqueness property.

Theorem 5.2. Let H be an n-dimensional distribution function with marginals
H1, . . . Hn. Then there exists an n-copula C such that ∀x ∈ Rn

H(x1, . . . , xn) = C(H1(x1), . . . , Hn(xn)).

If all (Hi)i are continuous, then C is unique.
Conversely, if C is an n-copula and H1, . . .Hn are distribution functions, then

the function H defined above is an n-dimensional distribution function with marginals
H1, . . . Hn.

Proof. see [22]

Thus the representation (5.4) defines a unique copulaC. This theorem shows clearly,
why the copula associated with Z is interpreted as the dependence structure among
the (Zi)i.
Below are examples of three different copulas:

• copula of n independent random variables

C(u1, . . . , un) = u1 · . . . · un

• standard bivariate Gaussian or normal copula

CGaρ (u1, u2) =
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1
2π
√

(1− ρ2)
exp
(
− (s2 − 2ρst+ t2)

2(1− ρ2)

)
dsdt

where

ρ = linear correlation parameter, −1 < ρ < 1
Φ = univariate standard normal distribution function
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• standard bivariate t-copula with ν degrees of freedom

Ctν,ρ(u1, u2)
∫ t−1

ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1
2π
√

(1− ρ2)

(
1 +

s2 − 2ρst+ t2

ν(1 − ρ2)

)− ν+2
2

dsdt

where

ρ = linear correlation parameter, −1 < ρ < 1
Φ = univariate standard t-distribution function

We illustrate these examples with the following three pictures.
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Figure 5.1: Generation of 1000 random variates from the following bivariate copulas: 1)
copula of independent random variables, 2) normal copula with correlation ρ = 0.7, 3)
t-copula with correlation ρ = 0.7 and ν = 3.

An attractive feature of the copula representation of dependence is that the
copula itself is invariant under increasing and continuous transformations of the
marginals.

Proposition 5.2. If (Z1, . . . , Zn)T has copula C and T1, . . . Tn are increasing and
continuous functions, then (T1(Z1), . . . , Tn(Zn))T also has copula C.

Proof. see [7], page 6

Note, that ifH is an n-dimensional distribution function with marginalsH1, . . .Hn

and copula C we will also write equivalently C(H1, . . . , Hn) for H .

5.3 Multivariate binary distributions

In this section we will focus on two ways of how to generate multivariate binary
distributions: a latent variable model and a mixture type model. We will show that
the two previously discussed KMV/CM and CR+ models each fit into one of the
two frameworks.

5.3.1 Latent variable models

A general approach to induce dependence among binary random variables is to
discretise a continuous n-variate random vector using a set of ’cutoff’-points. The
so-called latent variable model is given by

Z = (Z1, . . . , Zn)T , Z ∼ C(F, . . . , F )
Xi = I{Zi<F−1(pi)}, i = 1, . . . n



5.3. MULTIVARIATE BINARY DISTRIBUTIONS 25

with

F = a continuous distribution function
F−1(pi) = cutoff-points.

The discrete distribution of X can be calculated as follows. Let xi ∈ {0, 1} ∀i,
then

P [X1 = x1, . . . , Xn = xn] = P [a1 ≤ Z1 ≤ b1, . . . , an ≤ Zn ≤ bn]

(5.3)
=

2∑
i1=1

. . .

2∑
in=1

(−1)i1+...+inC(y1i1 , . . . , ynin)

with

ai =
{
−∞ if xi = 1
F−1(pi) else

bi =
{
F−1(pi) if xi = 1
∞ else

and yi1 = ai, yi2 = bi ∀i ∈ {1, . . . n}. For the marginal probabilities we get trivially
that P [Xi = 1] = C(1, . . . , 1, pi, 1, . . . , 1) = pi.

We see that the latent variable approach allows for a very broad dependence
structure among the binary random variables (Xi)i. An example of such a model
is KMV/CM. In both models the latent variable vector Z stands for the asset log-
returns (refer to page 19), i.e.

F = cumulative standard normal distribution function
C = normal copula with correlation matrix Σ
pi = marginal default probability of firm i.

5.3.2 Mixture type models

In the following mixture type model dependence between a set of Bernoulli ran-
dom variables Xi ∼ Ber(pi) comes from a conditional independence in which the
Bernoulli parameters (pi)i are random and dependent on each other. That is

(Xi|pi)i independent ∼ Ber(pi), i = 1, . . . n
p ∼ G, G a distribution function on [0, 1]n.

We then get for the conditional probability distribution of X that

P [X1 = x1, . . . , Xn = xn|p] =
n∏
i=1

pxii (1 − pi)1−xi

and hence the unconditional

P [X1 = x1, . . . , Xn = xn] =
∫

[0,1]n

n∏
j=1

pxii (1− pi)1−xiG(dp).
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We see that CR+ fits almost perfectly into the framework of mixture type mod-
els. The only difference to the setup is that the support of (pi)i is defined on [0,∞[
instead on [0, 1]. Due to this fact we will encounter some difficulties in our further
investigations on the model.

5.3.3 Mapping KMV/CM to the framework of CR+

Apart from the fact that the latent variable and the mixture type models are two
very general methodologies to impose dependence among binary random variables,
the two setups do not seem to have anything in common. In general, an analytic
relationship between the two models can not be established. But because KMV/CM
generate the latent variables (i.e. the asset log-returns) by a normal factor model,
it is possible in this special case to map the latent variable type KMV/CM model
to the mixture model of CR+ (as already shown in [10], page 125-126). To do this
we start again with the factor model for the asset log-returns (refer to page 19):

Zi =
K∑
j=1

aijRj + Ei, i = 1, . . .N

Xi = I{Zi<Φ−1(pi)}.

By F we define the sigma-field generated by R1, . . . RK , i.e. F = σ(R1, . . . RK),
and by σ2

i the variance of the idiosyncratic risk Ei, i = 1, . . .N . Then we calculate
the following conditional probability:

P [Xi = 1|F ] = P

 K∑
j=1

aijRj + Ei < Φ−1(pi)|F


= P

Ei < Φ−1(pi)−
K∑
j=1

aijRj |F


= P

[
Ẽi <

Φ−1(pi)−
∑K

j=1 aijRj

σi
|F
]
, (Ẽi)i iid∼ N (0, 1)

= Φ

(
Φ−1(pi)−

∑K
j=1 aijRj

σi

)
=: p̃i.

Noting that (Xi|p̃i) = (Xi|F) we retrieve the following mixture model:

(Xi|p̃i)i independent ∼ Ber(p̃i)

Φ−1(p̃i) =
1
σi

Φ−1(pi)−
K∑
j=1

aijRj

 .

This is the translated version of the KMV/CM model to the CR+ framework. We
still even have a factor model, not for the Bernoulli parameter p̃i itself, but for
Φ−1(p̃i).

It is crucial to see that the only reason why we could establish this mapping is
because of the normality of the factor model. If the (Ei)i were uncorrelated only, as
in general factor model theory, the (Xi|p̃i)i would not be independent.
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Comparison of the models

Even though we can now write the KMV/CM and the CR+ model both in in
terms of a mixture type model, there is no obvious answer to the question on how
to compare the two models, when applied to a heterogeneous portfolio. Because
either models strongly depend on the weighting’s (aKMVij ), (aCRij ) (refer to page 19),
which determine the dependence structure, and no reasonable link in between can
be established, simplifying assumptions to the portfolio are needed.

We will consider so-called ’homogeneous’ portfolios of loans and bonds. Portfolio
homogeneity we define to be the following: ∀k ∈ {1, . . . n} and for all permutations
s of {1, . . . k}

(X1, . . . , Xk) d= (Xs(1), . . . , Xs(k)). (6.1)

When considering homogeneous portfolios we will use from now on the following
notation:

π := P [Xi = 1] = pi ∀i = 1, . . . n
ρX := Corr[Xi, Xj] ∈]0, 1[ ∀i 6= j

Our aim is to compare KMV/CM with CR+ by evaluating the models for various
homogeneous portfolios. Each portfolio shall be characterised by a pair (π, ρX).

We start off by giving some properties of the latent variable and the mixture
models in the homogeneous case and show that the homogeneity structure on the
portfolio is not too strong to give a reasonable comparison of the models.

6.1 Homogeneous latent variable models

Using the same notation as in the introduction to general latent variable models
(refer to page 24) we get for the homogeneous case

Z ∼ C(F, . . . , F ), C an ex-changeable copula
Xi = I{Zi<F−1(π)}, π ∈]0, 1[, i = 1, . . . n.

By an ex-changeable copula we mean the propertyC(x1, . . . , xn) = C(xs(1), . . . , xs(n)),
where s stands for any permutation of {1, . . . n}, xi ∈ [0, 1]. This additional condi-
tion on the copula is needed to guarantee (6.1).

The higher order joint default probabilities and the default indicator correlations
are then given by
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πk := P [X1 = 1, . . . , Xk = 1]
= P [Xs(1) = 1, . . . , Xs(k) = 1], s any permutation of {1, . . . n}
= C(π, . . . , π, 1, . . . , 1) (k-times π, (n− k)-times 1), k ∈ {1, . . . n}(6.2)

ρX =
π2 − π2

π − π2
(6.3)

6.2 Homogeneous mixture type models

The structure of the homogeneous mixture type model is

(Xi|p)i independent ∼ Ber(p)
p ∼ G, G a distribution function on [0, 1].

Immediately we have π = E[p], πk = E[pk], ρX = π2−π2

π−π2 and that

P

[
n∑
i=1

Xi = k

]
=

(
n

k

)
P [X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0]

=
(
n

k

)∫ 1

0

pk(1− p)n−kG(dp)

=
(
n

k

)∫ 1

0

pk
n−k∑
i=0

(
n− k
i

)
(−1)ipiG(dp)

=
(
n

k

) n−k∑
i=0

(
n− k
i

)
(−1)iπk+i, k ∈ {0, 1, . . . n} (6.4)

6.3 Validity of homogeneous portfolios

At a first glance the homogeneity condition (6.1) on our portfolio seems very strong.
But fortunately it is not too strong in the sense that when fixing the parameters
π, ρX the higher order joint default probabilities (π3, π4, . . . ) still depend on the
model and are not automatically determined by the two parameters.

To make this statement clear we give an example of a homogeneous portfolio for
a mixture type model (like CR+). The idea is to define a model with 3 (or more)
parameters such that π and ρX are determined as soon as 2 of the 3 parameters
are set. The 3rd parameter then allows for the variability in the higher order joint
default probabilities. So let’s consider the following model:

(Xi|p)i independent ∼ Ber(p)
p = π(wR + 1− 0.5w)
R ∼ G, G a distribution function on [0, 1]
E[R] = 0.5, Var[R] = σ2

The parameters of this model are w, π, σ and it is straightforward to calculate the
following relationships:
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E[p] = π

E[p2] = π2(1 + w2σ2)
= π2 (6.5)

In the last section we have seen that fixing (π, ρX) is equivalent to fixing (π, π2).
We immediately see that for any given pair (π, π2) there exist infinitely many pairs
(w, σ) which solve equation (6.5) and hence variation in the higher order joint default
probabilities π3, π4, etc. is still possible.

6.4 Parameter estimation

Now we need to check for both frameworks KMV/CM and CR+, that any given
π ∈]0, 1[ and ρX ∈]0, 1[ can be met by choosing the free parameters in the models
appropriately.

6.4.1 KMV/CM

The free parameters in the KMV/CM model are the distances-to-default (DDi)i
and the latent variable (asset log-return) correlation matrix Σ. since

π = P [Zi < −DDi] (6.6)
= Φ(−DDi)

We obviously have for the distances-to-default that DDi = DDj =: DD and for all
π ∈]0, 1[ ∃!DD such that (6.6) is valid. The default indicator correlation ρX is given
by (6.3) and hence we need to check that π2 can possibly take every value in the
range ]π2, π[. π2 is given by

π2 =
∫ DD

−∞

∫ DD

−∞
fρZij (x, y)dxdy, i 6= j (6.7)

=: π2(ρZij)

where fρ(x, y) is the standard bivariate normal density function with correlation
coefficient ρ and ρZij stands for Corr[Zi, Zj]. Hence ρZij =: ρZ ∀i 6= j. Furthermore

π2(0) = inf
u∈[0,1[

π2(u)

= π2

lim
u↗1

π2(u) = sup
u∈[0,1[

π2(u)

= π,

and by using continuity and strict monotony of the function π2(u) we conclude that
for every pair (π, ρX) there exists in the KMV/CM model a unique pair (DD, ρZ)
such that all the model parameters are specified.
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6.4.2 CR+

As for KMV/CM we check the relationships between the parameters in the CR+

model. The free parameters are the default probabilities (p̄i)i, the variances of the
Gamma-factors (σ2

j )j and their weighting’s (aij) (refer to page 19). We have seen
before that π = E(pi) = p̄i ∀i. Another conclusion out of the homogenity property
of the portfolio is that the factor loadings need to be the same for every obligor i,
i.e. aij = akj =: aj ∀i, k. So our model reduces to

(Xi|p)i independent ∼ Ber(p)

p = π

K∑
j=1

ajRj , Rj independent ∼ Gam(1, σ2
j ).

Unfortunately the distribution of
∑

j ajRj is neither a Gamma nor any other com-
mon distribution with an analytic representation. We have found that for volatilities
(σj)j in the interval ]0, 1],

∑
j ajRj is very well approximated by a Gamma distri-

bution again with mean 1 and variance
∑

j a
2
jσ

2
j . To this chosen range of volatilities

we will come back in the next section. Hence

π

K∑
j=1

ajRj
d≈ πR, R ∼ Gam(1, σ2)

for

σ2 := Var

 K∑
j=1

ajRj

 =
K∑
j=1

a2
jσ

2
j .

We notice that this approximation yields the same result as when assuming only
one common factor to all (pi)i. From now on we assume only one common factor
R for the CR+ factor model. Thus a1 = 1 and for the probability π2 we have

π2 = E
[
(πR)2

]
= π2(σ2 + 1)

and hence for the default indicator correlation ρX we have

ρX =
πσ2

1− π .

Again we conclude that for every pair (π, ρX) there exists exactly one pair (π, σ)
such that the model is fully determined.

6.5 Setup

In the previous section we mentioned a range of values for the default rate volatility
parameter σ. This range was selected because according to information provided
by UBS, analysis of historical default rate volatilities for all different industrial and
country specific sectors shows that σ never exceeded the value of 1. That’s why we
have chosen 1 as an upper boundary for σ.
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The following table gives the values for (π, σ) which we shall consider for the
comparison of the models:

π (in %) 0.01 0.06 0.15 0.5 2.5 7.5
σ 0.2 0.6 1

This setup is valid because we proved that fixing (π, ρX) is equivalent to fixing
(π, σ). Hence the choice of parameters leaves us with 6 × 3 = 18 homogeneous
portfolios, characterized in the following table:

Nr Group π in % σ ρX in % ρZ in %
1 A 0.01 0.2 0.000 0.288
2 A 0.01 0.6 0.004 2.040
3 A 0.01 1.0 0.010 4.660
4 B 0.06 0.2 0.002 0.319
5 B 0.06 0.6 0.022 2.575
6 B 0.06 1.0 0.060 5.951
7 C 0.15 0.2 0.006 0.375
8 C 0.15 0.6 0.054 2.987
9 C 0.15 1.0 0.150 6.957

10 D 0.50 0.2 0.020 0.472
11 D 0.50 0.6 0.181 3.798
12 D 0.50 1.0 0.503 8.922
13 E 2.50 0.2 0.103 0.723
14 E 2.50 0.6 0.923 5.893
15 E 2.50 1.0 2.564 14.10
16 F 7.50 0.2 0.324 1.111
17 F 7.50 0.6 2.919 9.212
18 F 7.50 1.0 8.108 22.55

Table 6.1: The portfolios are numbered from 1 to 18 and categorized in groups A to F of
equal marginal default probability π. σ is the standard deviation of the Gamma risk factor,
ρX the corresponding default indicator correlations for the KMV/CM and for the CR+

model respectively, ρZ the asset log-return correlations for the KMV/CM model.

Moreover, we will assume that our portfolio consists of N = 14 loans or bonds.
Unfortunately time constraints and limited computational power have not allowed
for simulations of larger portfolios. The models will be compared by taking a look
at the quantities PXk , which are defined as

PXk = P

[
N∑
i=1

Xi = k

]
, k = 0, 1, . . .N.

Furthermore, we want to compare portfolio loss distributions as well. So we need to
specify a distribution for the loss given defaults (LGDi)i. As CM we assume a Beta
distribution for the recovery rate r with expectation 0.4 and variance (0.25)2 for
all portfolios. These parameters correspond approximately to maximum likelihood
estimates on historical recovery rates for senior subordinated bonds (see [5], page
71). The loan sizes or face values of the bonds we set equal to $100’000 and denote
them by V . Hence the loss contribution Li of obligor i is



32 CHAPTER 6. COMPARISON OF THE MODELS

Li =
{
XiLGDi in the CM/KMV model
YiLGDi in the CR+ model

LGDi = (1 − ri)V

with (ri)i iid ∼ Beta(0.4, (0.25)2). Remember, in all models the (LGDi)i are inde-
pendent of the default events (Xi)i.

6.6 Simulation

For the KMV/CM model we solved (6.7) for the asset log-return correlations ρZ

for each of the 18 portfolios and then used Monte Carlo Simulation with 0.5 million
runs to count the joint defaults and hence to estimate the (PXk )k.

The CR+ model allows for an analytical calculation of the joint default proba-
bilities PXk . Seeing πR is Gamma distributed we can solve for πk = E[(πR)k] using
characteristic functions and then apply formula (6.4). Unfortunately, we encounter
problems when applying (6.4) to portfolio No. 18. For this portfolio one of the
(PXk )k turns out to be negative! This comes from the fact that the Gamma distri-
bution of πR has its support on R+ and not only on [0, 1], as with mixture type
models in general. Hence for every parameter pair (π, σ) there exists a k0 such that
for all k > k0 we have that

E[(πR)k] > E[(πR)k0 ] ⇐⇒ πk > πk0 . (6.8)

We immediately conclude that the second inequality in (6.8) does not make sense.
Hence the portfolio where this problem occurred had to be taken out of consider-
ation. Note that in the original CR+ model this problem was eliminated by the
Poisson approximation, one of the first steps when deriving the portfolio loss pgf.

The comparison of the two models will be produced in tables on the next
few pages. First of all the default frequencies of the Monte Carlo simulation for
KMV/CM will be shown. To make comparison to CR+ easier, we transformed the
analytically calculated joint default probabilities of CR+ to default frequencies (by
multiplying them with the factor 0.5 million and rounding to the nearest integer).
The 3rd table will give the values of the so-called frequency multipliers, the ratio of
KMV/CM and corresponding CR+ frequencies. These were only calculated for the
frequencies which were observed at least 100 times, since the variance of the Monte
Carlo estimation otherwise grows too big.

After that, we compare the loss distributions arising from the two models. This
will be performed by calculating the mean, variance, skewness, kurtosis, Value at
Risk (VaR), at the levels 90%, 95%, 97%, 99%, 99.5% and Expected Shortfall (ES)
at the VaR-levels.

Skewness (Skew) refers to whether the distribution is symmetrical with respect
to its dispersion from the mean. Since loss distributions are by nature highly asym-
metric, the measure of skewness will provide information on the lack of symmetry.

Kurtosis (Kurt) measures the weight of the tails of a distribution. Loss distri-
butions have their support on R+ only and hence kurtosis will give an insight on
the amount of mass in the upper right tail; the more mass in the tail, the higher the
value of kurtosis. Kurtosis is (as well as skewness) a variance corrected measure.
That is, if we denote by Kurt(X) the kurtosis property of the distribution of the
random variable X, then we have that

Kurt(cX) = Kurt(X) ∀c ∈ R.
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For further risk quantification in the tail we calculate VaR and ES for the ho-
mogeneous portfolios. By VaR at the level α, VaRα, we simply mean the α-quantile
of the corresponding loss distribution. So VaRα will tell us how far out we must set
the loss threshold such that with probability α we incur a loss on our portfolio of
VaRα or less. ES at the level VaRα, ESα, is defined as E[L|L > VaRα] and hence
provides information on how large on average a potential loss will be, given the loss
exceeds the level VaRα.

Note, that ES is a coherent risk measure (according to [1]), where as VaR is not.
Seeing we can’t calculate the loss distributions analytically, we will calculate the

empirical estimators of the above mentioned properties from the simulated distri-
butions. We will present the simulation results in groups of 3 (as in table 6.1), since
always 3 out of the 18 portfolios share the same marginal default probability π.

6.7 Results and discussion

6.7.1 Analysis within groups

Tables 6.2 and 6.3 exhibit nicely that for constant marginal default probability π
an increase in default correlation produces higher joint default probabilities. More
precisely, the probability of having no defaults at all increases, but conditional on
the event that at least one default occurred, the probability of k defaults (k > 1)
increases substantially. The higher π, the bigger the impact.

Groups A, B, C, which reflect portfolios of firms with quite high credibility, show
that increasing correlation within each group does not affect the loss distribution
too much (refer to tables 6.4, 6.5). All properties of the distribution seem to remain
stable. This changes with groups of deteriorating credit quality (D, E, F). Variance
and most of all kurtosis starts to increase drastically; the higher π, the more. Check
on table 6.4 that portfolio No. 18 has almost double the variance of portfolio No.
16 and even double the amount of kurtosis! This fact is also visible in all the values
for VaR and ES.

6.7.2 Comparison of the groups

It follows by definition of the models that when credit quality decreases (i.e. π
increases) the number of joint defaults increases. This fact is obviously confirmed
by the tables 6.2, 6.3.

When focusing on the loss distributions (tables 6.4, 6.5) we see how the mean
starts to move away from zero further out to the right and goes hand in hand with
a drastic increase in variance.

For comparison of the tails of the distributions we take a look at the values of
VaR and ES. Those figures show once again that the lower credit quality is, the
more mass is shifted out in the right tail of the portfolio loss distributions. For
example in the KMV/CM model, ES99.5% of portfolio No. 18 is almost 10 times as
large as the corresponding ES99.5% of portfolio No. 3.

6.7.3 Multipliers

Table 6.6 gives the ratio of default frequencies for the two models: CR+ default
frequencies divided by corresponding KMV/CM default frequencies. The cells con-
taining ’n/a’, i.e. not available, show the big disadvantage of Monte Carlo simulation
in general. Although 0.5 million is quite a large number of simulations, it is by far
not enough for comparison of events which occure with extremely small probability
(the event of 8 defaults for portfolio No. 6, for example). For a closer look at the
mass contained in the very right tail of the KMV/CM loss distribution ’extreme
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value theory’ should be applied, if possible (see [8]). Unfortunately this is beyond
the scope of this paper.

Overall, the numbers available in table 6.6 seem to be very close 1, which suggests
that the two models perform very similar for all considered portfolios. This result is
further underlined by the multiplier table 6.7, which compares the loss distribution
properties of the two models.

6.7.4 Conclusion

We see that there is no significant difference in performance in the default frequency
behaviour or in the loss distribution of the 17 different homogeneous portfolios.

For comparison of larger portfolios we would need to use the Poisson approxi-
mation, as with the ’original’ CR+ model. Otherwise we would encounter for most
larger portfolios the same problem as with portfolio No. 18.

For a comparison of the models for 4 heterogeneous portfolios of a larger size,
see [10].
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Table 6.2: Number of defaults produced by Monte Carlo simulation from the KMV/CM model.



36
C

H
A

P
T

E
R

6
.

C
O

M
P

A
R

IS
O

N
O

F
T

H
E

M
O

D
E

L
S

Table 6.3: Number of expected defaults calculated for the CR+ model. n/a stands for ’not available’.
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Table 6.4: Properties of the loss distribution produced by Monte Carlo simulation from the KMV/CM model.



38
C

H
A

P
T

E
R

6
.

C
O

M
P

A
R

IS
O

N
O

F
T

H
E

M
O

D
E

L
S

Table 6.5: Properties of the loss distribution produced by Monte Carlo simulation from the CR+ model. n/a stands for ’not
available’.
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Table 6.6: Default frequency multipliers: number of defaults from the CR+ model divided by the corresponding number of
defaults from the KMV/CM model. n/a stands for ’not available’.
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Table 6.7: Multipliers of loss distribution properties: property of the CR+ loss distribution divided by the corresponding
property of the KMV/CM loss distribution. n/a stands for ’not available’. *Two corresponding properties have both value
zero. The ratio is zero divided by zero. We then define the multiplier to have value 1.



Chapter 7

Extension of the KMV/CM
methodology

In this chapter we will give a possible generalization of the KMV/CM model. The
reason why we do not try to extend the CR+ model is because none of the assump-
tions can be relaxed without loosing the analytic derivation of the portfolio loss
pfg. Apart from this, the first step in generalizing the KMV/CM methodology is
much more obvious. Seeing the standardized asset log-returns Z are N (0,Σ) (re-
fer to page 7), a possible extension is to assume that Z is elliptically distributed.
This makes sense because the multivariate normal distribution is a member of that
family of distributions.

As with the normal distribution linear correlation is also a canonical dependence
measure in the world of elliptical distributions (to be seen later), but it does not
anymore contain all information of the dependence structure.

Remember that the correlations among the asset log-returns were estimated
using a factor model. We will uphold the factor structure, because there is no other
obvious way of producing those correlations otherwise.

First of all we will give an introduction to elliptically distributed random vari-
ables.

7.1 Elliptical distributions

Elliptical distributions arise naturally as an extension of N (0,Σ), as well as an
extension of so-called spherical distributions. To see how all these distributions are
related to one another, we first start with the spherical. These provide a family of
symmetric distributions for uncorrelated random vectors with mean zero.

Definition 7.1. A random vector X = (X1, . . . , Xn)T is said to have a spherical
distribution if for every orthogonal map Γ ∈ Rn×n (ΓΓT = 1n×n)

ΓX d= X. (7.1)

1n×n stands for the (n× n)-identity matrix.

The characteristic function ψ(s) := E[exp(isTX)] of such distributions takes a
particular simple form. There exists a function φ : R+ → R such that ψ(s) =
φ(sT s). This function is called the characteristic generator of the spherical distri-
bution and we write
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X ∼ Sn(φ).

If X has a density f(x) = f(x1, . . . , xn) then this is equivalent to f(x) = g(xTx)
for some function g : R+ → R+ so that spherical distributions are best interpreted
as those distributions whose density is constant on spheres.

An example of an n-dimensional spherical distribution is N (0,1n×n). Note, that
in the class of spherical distributions the multivariate normal is the only distribution
with independent components (refer to [9], page 106).

Spherical distributions admit an alternative stochastic representation:

X ∼ Sn(φ) ⇐⇒ X
d= RU,

where the random vectorU is uniformly distributed on the unit hypersphere Sn−1 :=
{x ∈ Rn|xTx = 1} in Rn and the radial component R is a positive random variable,
independent from U (refer to [9], page 30 ).

Spherical distributions can thus be interpreted as mixtures of uniform distri-
butions on spheres of differing radius in Rn. For example if X ∼ N (0,1n×n),
then X can be represented as X d=

√
Y U with Y ∼ X 2

n , where X 2
n stands for the

Chi-Squared distribution with n degrees of freedom.
Elliptical distributions extend naturally the multivariate normalN (0,Σ). Math-

ematically, they are the affine maps of spherical distributions in Rn.

Definition 7.2. X is said to have an elliptical distribution with parameters (µ,Σ)
if

X
d= AY + µ, Y ∼ Sk(φ), (7.2)

where A is a (n× k)-matrix (the affine map, k ≤ n) and AAT = Σ, Rank(Σ) = k.

Since the characteristic function can be written as

ψ(s) = E
[

exp
(
(isTX

)]
= E

[
exp

(
isT (AY + µ)

)]
= exp (isTµ) exp

(
i(AT s)TY

)
= exp (isTµ)φ(sΣs),

we denote the elliptical distribution

X ∼ En(µ,Σ, φ). (7.3)

If Y has a density fY (y) = g(yT y) and if Σ is positive definite, then X = AY +µ
has density

fX(x) =
1√

det(Σ)
g
(
(x− µ)TΣ−1(x− µ)

)
,

and the contours of equal density now from ellipsoids in Rn. Apart from the multi-
variate normal also the t-distribution with ν degrees of freedom is a member of the
elliptical family. Let X be standard tν -distributed, [Σ]ij := Corr[Xi, Xj]. Then X
can be represented as
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X
d=
√
ν√
S
Z, Z ∼ N (0,Σ), S ∼ X 2

ν (7.4)

d=
√
ν√
S

AZ̃, AAT = Σ, Z̃ ∼ N (0,1n×n)

d= A
√
ν√
S

√
RU, R ∼ X 2

n , U uniform on Sn−1

d= A(R̃U),
R̃2

n
∼ F (n, ν),

and we denote X ∼ tν,Σ. F (n, ν) stands for the F-distribution with n and ν degrees
of freedom.

Note, that (7.3) implies that an elliptical distribution is fully described by its
mean, covariance matrix and its characteristic generator. But conversely, knowledge
of the distribution of X does not completely determine the elliptical representation
En(µ,Σ, φ); it uniquely determines µ but Σ and φ are only fixed up to a positive
constant (refer to [9], page 43). Naturally the question arises if it is possible for
X elliptically distributed to find (Σ, φ) such that X ∼ En(µ,Σ, φ) and Cov[X ] =
Σ? We assume the existence of the second moment of the radial component, i.e.
E[R2] <∞. Then

Cov[X] = Cov[AY + µ]

= AATCov[Y ]
= AATE[R2]Cov[U ].

Seeing U is uniformly distributed on the unit hypersphere in Rn, we have Cov[U ] =
1
n1n×n. Hence Cov[X ] = 1

nAATE[R2]. By choosing the characteristic generator
φ̃(s) = φ( sc ), where c := n

E[R2] , we get Cov[X] = AAT = Σ.
The above calculation in conjunction with (7.2) show that linear correlation is a

natural dependence measure for elliptical distributions. But unlike for the multivari-
ate normal distribution it does not contain anymore all information of dependence.
This fact becomes obvious when we fix a correlation matrix Σ and consider the
family of elliptical random vectors given by {X|S a random variable on R+, X

d=
SY , Y ∼ N (0,Σ)}, which shares the same correlation matrix Σ for all its members.

7.1.1 Tail dependence

We now introduce an additional measure of dependence, the so called coefficients
of upper and lower tail dependence. These coefficients provide information on the
amount of dependence in the upper-quadrant tail and lower-quadrant tail of a bivari-
ate distribution. Although this measure will only be defined for bivariate random
variables, we will see later how the data of our multivariate simulations can be in-
terpreted using the notion of tail dependence. For the remainder of this section we
suppose that X1 and X2 are two continuously distributed random variables with
distribution functions F1, F2 and copula C, i.e. (X1, X2) ∼ C(F1, F2).

Definition 7.3. The coefficient of upper tail dependence of X and Y is defined as

λU := lim
u↗1

P [X2 > F−1
2 (u)|X1 > F−1

1 (u)],

provided that the limit λU ∈ [0, 1] exists. If λU ∈]0, 1], X1 and X2 are said to be
asymptotically dependent in the upper tail; if λU = 0, X1 and X2 are said to be
asymptotic independent in the upper tail.
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The coefficient of lower tail dependence λL is equivalently defined for the lower
left quadrant:

λL := lim
u↘0

P [X2 < F−1
2 (u)|X1 < F−1

1 (u)],

if the limit exists.

By definition we see that the concept of tail dependence is relevant to dependence
in extreme values.

We provide an alternative and equivalent definition from which it follows that
this concept is a copula property.

Definition 7.4. If a bivariate copula C is such that

λU = lim
u↗1

C(u, u)− 2u+ 1
1− u

exists, then C has upper tail dependence if λU ∈]0, 1] and none if λU = 0.
The coefficient of lower tail dependence λL as a function of C is given by

λL = lim
u↘0

C(u, u)
u

, (7.5)

again provided the limit exists.

If we additionally assume the marginals of (X1, X2) to be equally distributed
(F := F1 = F2) and the copula C to be ex-changeable (symmetric), which is true
for all bivariate elliptical copulas, we find (see [7], page 18)

λU = 2 lim
x→∞

P [X2 > x|X1 = x]

λL = 2 lim
x→−∞

P [X2 < x|X1 = x].

Moreover, it can be shown that for elliptical copulas the upper and lower coef-
ficient of tail dependence are the same. This is due to the symmetry property of
elliptical distributions imposed by the radial component. Since we will only focus on
elliptical distributions, we refer to λU and λL as the coefficient of tail dependence,
denoted by λ.

As an example we will now calculate λX for (X1, X2) bivariate standard normal
and for (Y1, Y2) bivariate standard t-distributed with ν degrees of freedom λY re-
spectively, both with linear correlation coefficient ρ ∈]− 1, 1[. Then by elementary
calculations we retrieve

(X2|X1 = x) ∼ N
(
ρx, (1− ρ2)

)
(
ν+1
ν+y2

) 1
2 Y2−ρy√

1−ρ2
∼ tν+1

and hence

λX = 2 lim
x→∞

(
1− Φ

(
x(1 − ρ)√

1− ρ2

))
= 0

λY = 2 lim
y→∞

1− tν+1

( ν + 1
ν
y2 + 1

) 1
2 √1− ρ√

1 + ρ


= 2tν+1

(
−
√
ν + 1

√
1− ρ√
1 + ρ

)
.
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We conclude that for linear correlation values |ρ| 6= 1 the Gaussian copula has
always zero tail dependence. Conversely, the coefficient λY of the t-copula is for
all values of ν, ρ strictly positive; increasing in ρ and decreasing in ν. Furthermore
letting ν tend to infinity the t-copula converges to the normal copula and hence

λY
ν→∞−→ λX = 0.

We give a table of calculated tail dependence coefficients λ (expressed as a per-
centage) for some values of the parameters (ν, ρ)

ν\ρ -0.5 0 0.3 0.7
3 2.57 11.61 21.61 44.81
5 0.54 4.98 12.24 34.32

10 0.01 0.69 3.32 19.11
20 0.00 0.02 0.29 6.79

and a graphical illustration of tail dependence. Figure 7.1 exhibits that in the lower
left and upper right quadrant the t-copula seems to produce more variates along
the diagonal than the normal copula, i.e. extreme events tend to show more often
in pairs than with the normal copula.
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Figure 7.1: 5000 samples from two distribution with equal standard normal marginals,
linear correlation coefficient of the copula ρ = 0.7 but different dependence structures.
(X1, X2) has a Gaussian copula and (Y 1, Y 2) a t-copula with ν = 3 degrees of freedom.

Taking another look at (7.4) we conclude that the t-copula is a very useful
alternative to the normal copula: simulation from both copulas is straightforward
and the parameterisation by the correlation matrix allows for easy interpretation of
the parameters. Furthermore, seeing the convergence of the t- to the normal copula
is very fast for ν →∞ (a t-copula with ν = 30 is almost perfectly a normal copula),
by starting at ν = 30 we can move in a ’continuous’ manner away from the normal
copula and get increasing tail dependence by choosing ν smaller and smaller.

7.2 Mixtures of normal distributions

As we already know, the distribution of the latent variable vectorZ in the KMV/CM
model is multivariate normal. A particular interesting class of elliptical distribu-
tions and an obvious extension of the normal distribution is the class of (variance)
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mixtures of normal distributions. Any random vector Z of that category can be
written as

Z
d= SZ̃ (7.6)

with S > 0, E[S2] <∞, Z̃ ∼ N (0,Σ), S, Z̃ independent, Σii = 1 ∀i.
In the KMV/CM model a factor model was used to produce the correlation

matrix of the standardised asset log-returns (refer to page 19). The class of mixtures
of normal distributions allows for an easy factor decomposition of the latent vector
Z as well (to be seen in the next section).

Surprisingly, another justification of this model extension is given by a result
in [14], page 130-132. It says that if we restrict the class of elliptical distributions
to those which allow for the same equal marginals for any dimension n, then this
category is the class of mixtures of normal distributions given by the representation
(7.6). More clearly, if the elliptical distribution of Z = (Z1, . . . , Zn)T satisfies the
condition

∃F : ∀n ∈ N : Zi ∼ F ∀i = 1, . . . n (7.7)

then it can be shown that

∃S > 0 : Z d= SZ̃, Z̃ ∼ N (0,Σ).

(The result in [14] is given for spherical distributions, but can easily be relaxed to
elliptical ones.)

If we require the elliptical distribution of the latent vector Z to be ’compatible’
to portfolios of any size n, then this restriction on the marginals given by equation
(7.7) is needed! Furthermore, if we use a factor decomposition in the extended
model to estimate the covariance matrix of Z (coming up in the next section), then
one desired property of that factor model is definitely that it can be applied to
portfolios of any size n.

7.3 Extended factor model

For the mixture of normal model we also assume that the standardized asset log-
returns Zi, i = 1, . . .N are generated by a factor model. This is by (5.1) equivalent
to saying that

[Cov(Zi, Zj)]ij = AAT + D

for some A,D defined as in (5.1). (7.6) gives Cov[Zi, Zj] = E[S2]Cov[Z̃i, Z̃j] and
we immediately retrieve the factor structure:

Zi =
1√
E[S2]

S

 K∑
j=1

aijRj + Ei


=:

K∑
j=1

ãij(SRj) + (SEi), i = 1, . . .N, (7.8)

where aij , Rj , Ei are defined as on page 19.
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The factor S can be interpreted as a ’global’ risk. We see that the former inde-
pendence among the factors and the idiosyncratic risk has weakened (because of S)
to uncorrelatedness only. Since Cov[SRi, SRj] = Cov[SRi, SEk] = Cov[SEk, SEl] =
0 (∀i, j, k, l), (7.8) is indeed a factor model according to definition (5.1). For prac-
titioners it is worthwhile mentioning that Corr[Zi, Zj] = Corr[Z̃i, Z̃j], which shows
that estimation of the correlations has not become more difficult than with the
’older’ factor model!

7.4 Possible models for S

For a non-parametric estimation of S a huge amount of asset value time series
needed to be available. Since this is hardly ever the case in practice, we will focus
on parametric estimation of S. So first a distribution for S needs to be chosen.

7.4.1 t-distribution

In the field of elliptical distributions we could consider the well known multivariate
t-distribution with ν degrees of freedom for Z. This assumption determines S
completely (refer to (7.4)):

S
d=
√
ν√
X
, X ∼ X 2

ν .

The only parameter to be estimated is ν, since the correlation matrix is already
given by the factor model. A possible method to calibrate ν is maximum likelihood
on historical asset data. It is crucial to see that the maximum likelihood estimate
needs to be done for the joint distribution of Z and not only for the marginal
distributions of the (Zi)i.

7.4.2 Symmetric hyperbolic distributions

In recent history generalized hyperbolic distributions have been very successfully
applied to univariate log-returns of financial time series (such as stocks, stock in-
dices). For further information refer to [6]. A possible parameterization of the
hyperbolic density fhyp(x) is given by

fhyp(x) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp
(
− α

√
δ2 + (x − µ)2 + β(x− µ)

)
,

where K1 denotes the modified Bessel function of the third kind with index 1. The
parameters α and β with α > 0 and 0 ≤ |β| < α determine the shape of the
distribution, while the other two, δ and µ, are scale and location parameters.

It was pointed out by Barndorff-Nielsen (see [2]), that the hyperbolic distribution
can be represented as normal mean-variance mixture, where the mixing distribution
is a generalized inverse Gaussian with density

fgiG(x) =

√
ψ
γ

2K1(
√
ψγ)

exp
(
−1

2
(γx−1 + ψx)

)
x > 0.

If we set γ = δ2 and ψ = α2 − β2 it follows that



48 CHAPTER 7. EXTENSION OF THE KMV/CM METHODOLOGY

X ∼ fhyp(x)dx ⇐⇒ X |σ ∼ N (µ+ βσ2, σ2)
σ2 ∼ fgiG(x)dx

Now if we consider the representation (7.6) for Z, Z = SZ̃, and if for a moment
we focus on the marginalsZi only, then obviously eachZi can be written equivalently
as

Z̃i|S ∼ N (0, S2), i = 1, . . . n.

Hence, if we choose the distribution of S2 to follow a generalized inverse Gaus-
sian distribution, then every Zi has a two parameter (γ, δ) symmetric hyperbolic
distribution when the other two parameters µ and β are set to zero. From the pa-
rameterization of the density fhyp(x) we deduce that for µ = β = 0 the distribution
of S2 is symmetric with respect to the mean and that the mean is equal to zero.
For the multivariate distribution of Z we then have that

Z|S ∼ N (0, S2Σ), Σ a correlation matrix.
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t-model versus KMV/CM

8.1 Setup

In the same manner as the KMV/CM and the CR+ model were compared for
homogeneous portfolios we now compare the KMV/CM model with the so-called
t-model, which is defined as:

Z ∼ tν,Σ, Σ a correlation matrix
Xi := I{Zi<t−1

ν (π)}.

We emphasize that the only difference between the KMV/CM and the t-model is
the copula of the latent variable vector Z. To make this point totally clear, we write
down the two models against each other:

ZKMV ∼ N (0,Σ)

Zt
d=
√
ν√
S
Z̃, Z̃ ∼ N (0,Σ), S ∼ X 2

ν (8.1)

and for all i = 1, . . .N we have

XKMV
i = 1 ⇐⇒ ZKMVi < −DDKMV

i

Xt
i = 1 ⇐⇒ Zti < −DDt

i .

The distances-to-default (DDKMV
i )i, (DDt

i)i are set in each model such that

P [XKMV
i = 1] = P [Xt

i = 1] = π, i = 1, . . .N.

8.2 Simulation

The following comparison will give an insight of the impact of the choice of copula
on the credit risk models developed by KMV and J.P. Morgan. We will evaluate
the homogeneous portfolios for the degree of freedom parameter ν at 3,5,10,20 and
then compare the results when simulating from the t-model with the former results
for the KMV/CM model.

The first table will contain again the default frequencies for the KMV/CM
model, followed by the frequencies of the t-model for ν decreasing from 20 to 3.
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So the reader can compare very easily the impact of the new t-copula with increas-
ing tail dependence, but keeping linear correlation constant.

We will only present the tables of the default frequencies and the tables contain-
ing the multipliers of the loss distribution properties, to make comparison of the
KMV/CM model to the t-model easier.

8.3 Results and discussion

8.3.1 Default frequencies

When scrolling through the tables 8.1 to 8.5 the impact of tail dependence incorpo-
rated by the t-copula becomes very obvious. The joint default frequencies of higher
order of all portfolios just seem to explode as ν decreases.

In this and the next section we will focus on comparison of the KMV/CM and
the t-model for ν = 3.

The first column of the tables 8.1 and 8.5 exhibits that the event of incurring no
default at all receives even higher probability in the t-model than in KMV/CM. But
the remaining columns clearly show that given the event of at least one default, the
probability of several defaults at a time increases (more than) substantially! Now
it becomes very obvious what is meant by saying ’extreme values tend to appear
together’ !

Analysis within groups

Two very astonishing observations are that portfolios containing obligors of a very
high credibility (A,B) are very much affected by the t-copula and the impact seems
to be the highest for portfolio groups C and D (average credibility). Portfolio No.
10 in the KMV/CM model never produced joint defaults of order 4 and higher
where as when evaluated with the t-model joint defaults appeared up till order 10!
980 times the event of 4 defaults occurred where as with KMV/CM this event was
never observed!

Comparison of the groups

Obviously the t-model produces more joint defaults the lower the credit quality
(i.e. the higher π). This follows by definition for all latent variable models and was
already observed for the KMV/CM and the CR+ default frequencies.

8.3.2 Loss distributions

Now we focus on the relative comparison of the loss distribution properties of the
KMV/CM and the t-model with degrees of freedom parameter ν = 3.

One property, which remains unchanged relatively to KMV/CM is the mean
(refer to table 8.9). For all 18 portfolios the multiplier is very close to 1. For the
variance, we have on average more than double the amount for the t- than for the
KMV/CM model. Relative skewness is always above one and on average close to 2.
Hence the t loss distribution is always more asymmetric than the one produced by
KMV/CM. Very interesting is also the comparison of relative variance with relative
kurtosis. Relative kurtosis is on average way above 1. A relative increase in variance
goes always with a relative increase in kurtosis, which shows again that the mass
of the loss distributions, which lies to the right of the mean, gets pushed far out in
the tail by the t-copula. For example portfolio No. 1 produces double the variance
and even 6 times higher kurtosis for the t-model than for KMV/CM!
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For a closer look at the tail of the loss distributions we again analyze the results
within groups and compare different groups separately.

Analysis within groups

Within each group, all multipliers of each property are very close to one another; the
higher π, the closer. This exhibits that for increasing default correlation, keeping
the marginal default probability π constant, has approximately the same relative
effect on the KMV/CM as on the t-model! Hence, all multiplier values different
from 1 are ’only’ due to the additional tail dependence property of the t-copula!

Comparison of the groups

Surprisingly, as already noticed when evaluating the frequency tables, the t-copula
seems to have the highest impact on the group C and D, i.e. on portfolios with an
average credit rating grade and not as one may intuitively think in the group F, the
group of worst credit quality. Let’s take a closer look at group C. The 99% VaR is on
average 1/3 smaller for the t-copula than for the normal one, but the corresponding
ES is on average 45% higher! Similarly for the 99.5% level. An increase of 10%
VaR for the t-model yields in an increase of 90% in the corresponding ES. For the
portfolio group E and F the VaR’s percentage increase goes with an approximate
equal increase in ES.

Furthermore, if we take a look at ES at the level 99.5% we see by scrolling down
the column that the multiplier reaches its maximum in portfolio group D!

To understand this phenomenon, we take another quick look at the setup at the
beginning of this chapter. The factor S̃ :=

√
ν/
√
S is the only cause of the tail

dependence property of the t-copula. Say if ˆ̃Z is a variate of Z̃ containing a lot of
negative marginal variates ˆ̃Zi which lie in the interval ]−DDKMV

i , 0[, then a possible
large variate of the factor S̃ can push these variates below the default points −DDt

i

and hence the event of many simultaneous defaults occurs in the t-model, but not
in the KMV/CM model. The results of the simulation reveal that the impact of
the factor S̃ on the very outer tail of the loss distribution (compare the values of
ES99.5%) is high for groups of a high and average credit rating (highest for group
D) and weakens as credit quality decreases. This is due to the fact that the normal
distribution decays extremely fast when moving away from its mean. But when
credit quality deteriorates the corresponding default points −DDKMV

i move closer
to the mean zero and for the groups E,F they turn out to be close enough to let the
normal distribution produce many simultaneous defaults. So if a variate Z̃ already
contains many marginal variates which lie below the default point, a possible high
variate of S̃ does not change the picture. Note that for π = 50% (corresponds to a
default point of zero in both models) the impact of S̃ vanishes completely.

8.3.3 Specific portfolios

The last table compares the models for 3 specific portfolios, namely No. 5, 11 and
17. No. 5 represents a portfolio of high credit quality (π = 0.06%), the second
portfolio has an average credit grade (π = 0.5%) and portfolio No. 17 contains
obligors of very low credit quality (π = 7.5%).

Table 8.10 exhibits once again very clearly (leaving the VaR-thresholds out of
consideration) that independent which of the 3 portfolios considered, the t-model
with increasing tail dependence always aggravates the portfolio loss distribution
(from a portfolio manager perspective). For portfolio No. 5 and 11 we see why
stand-alone VaR should not be considered as a risk measure. The empirical VaR’s of
portfolio No. 5 would lead us to choose the t-model, ν = 3, from a VaR-point of view!
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This result also holds for some of the quantiles for the average credit grade portfolio
No. 11. The values of VaR90%, VaR95% and VaR97% are declining as ν increases!
Since expected shortfall is a coherent risk measure, (see [1]) for comparison of the
models ES should anyway be taken stronger into account. Those values reveal that
the portfolio manager would prefer that his portfolio loss distribution followed the
KMV/CM model!
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Table 8.1: Number of defaults produced by Monte Carlo simulation from the KMV/CM model.
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Table 8.2: Number of defaults produced by Monte Carlo simulation from the t-model with degrees of freedom parameter ν = 20.
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Table 8.3: Number of defaults produced by Monte Carlo simulation from the t-model with degrees of freedom parameter ν = 10.
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Table 8.4: Number of defaults produced by Monte Carlo simulation from the t-model with degrees of freedom parameter ν = 5.
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Table 8.5: Number of defaults produced by Monte Carlo simulation from the t-model with degrees of freedom parameter ν = 3.
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Table 8.6: Multipliers of loss distribution properties: property of the t loss distribution (ν = 20) divided by the corresponding
property of the KMV/CM loss distribution. *Two corresponding properties have value zero for both models. The ratio is zero
divided by zero. We then define the multiplier to have value 1.
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Table 8.7: Multipliers of loss distribution properties: property of the t loss distribution (ν = 10) divided by the corresponding
property of the KMV/CM loss distribution. *Two corresponding properties have value zero for both models. The ratio is zero
divided by zero. We then define the multiplier to have value 1.
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Table 8.8: Multipliers of loss distribution properties: property of the t loss distribution (ν = 5) divided by the corresponding
property of the KMV/CM loss distribution. *Two corresponding properties have value zero for both models. The ratio is zero
divided by zero. We then define the multiplier to have value 1.**Value of KMV/CM property is zero and corresponding value
of t-property is greater than zero.
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Table 8.9: Multipliers of loss distribution properties: property of the t loss distribution (ν = 3) divided by the corresponding
property of the KMV/CM loss distribution. *Two corresponding properties have value zero for both models. The ratio is zero
divided by zero. We then define the multiplier to have value 1.**Value of KMV/CM property is zero and corresponding value
of t-property is greater than zero.
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Table 8.10: Loss distribution properties of KMV/CM and t-model for 3 specific portfolios.



Chapter 9

Alternative risk transfer

9.1 Definition

Suppose we want to insure some of our potential risk of incurring high losses on our
credit portfolio (denote by L the portfolio losses). Say we want to hand over all
losses which are above a certain threshold U to a third party, such that our maximal
loss never exceeds the limit U . Hence the amount of money V the third party is
obliged to pay at time T is

V = max(L− U, 0).

It is clear that the price of such a contract highly depends on the way the
portfolio loss distribution (at our fixed time horizon T ) is modeled and hence what
kind of copula is incorporated in the latent variable model. If all our loans were
tradeable at an exchange and if interest rates were taken to be constant, then we
could consider to price the contract under the ’no-arbitrage’ assumption. Thus
there would exist a risk neutral probability measure Q such that the price p of our
contract would yield

p =
1

1 + r
EQ[V ]

with

r = non-stochastic interest rate over time period [0, T ].

Since the tradeability assumption is violated for most portfolios and the task
to find the ’proper’ Q out of infinitely many is practically impossible for credit
portfolios, we will use as a pricing tool the discounted expected payoff of our contract
under the true probability measure given by the model, i.e.

p :=
1

1 + r
E[V ].

We will consider a contract with a threshold U equal to $100’000. In practice
this threshold is often a certain quantile of the portfolio loss distribution. Since we
compare different models, a relative threshold (such as a quantile), would not make
much sense.
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Now the contract will be priced for our various homogeneous portfolios under
the KMV/CM and under the t-model for the same parameter values ν = 3, 5, 10, 20
as used before and under the empirical loss distribution produced by the Monte
Carlo simulation. We choose our time horizon T equal to one year and the risk free
interest rate r equal to 5%.

9.2 Results and discussion

The prices of the contract for the various portfolios calculated under the different
models are produced in the following table:

Table 9.1: Prices of the contract for the KMV/CM and the t-models.
The loss threshold U is set at $100’000.

These prices provide some additional information on the amount of mass in the
tails of the various loss distributions. In each row of table 9.1 we see again that the
more tail dependence incorporated in the copula of the latent variables, the higher
the price of the contract turns out to be. Scrolling down each column we conclude
that the lower the credit quality, the higher the price (as expected).

As in the previous comparison of the KMV/CM and the t-model we notice that
the portfolios of high rating grades react much more sensitive to an increase in tail
dependence. The price of the contract for portfolio No. 4 under the t-model (with
degrees of freedom parameter ν = 3) is more than 100 times as large as for the
KMV/CM model, where as the relative increase in price for portfolio No. 18 is not
even 50%! We must admit that we didn’t expect the results to be so drastic!

Another surprising empirical fact is that prices for the KMV/CM model react
much faster to changes in default correlation ρX for portfolios of all rating classes!
Consider portfolio No. 10 and 12: the price of the contract under the KMV/CM
model for portfolio No. 12 is more than double the price of portfolio 10, where as
the relative increase under the t-model (ν = 3) is not even 10%.
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Increasing portfolio size

It would be extremely interesting to see how the KMV/CM and the t-model behave
for homogeneous portfolios of larger size. Intuitively we would assume that by
increasing the number of obligors the tail dependence property of the t-copula would
shift even more mass out in the tail, i.e. our loss distribution would ’worsen’ with
increasing portfolio size relative to the KMV/CM model.

We will investigate on this topic by letting the size of our homogeneous portfolios
grow from 14 to 200, with intermediate sizes of 50 and 100. Because we didn’t have
enough time to simulate all 18 portfolios (processing time is not linear in portfolio
size n), we chose for comparison 3 portfolios out of the 18, again No. 5, 11 and 17
(refer to table 6.1, page 31). For these portfolios we compared their loss distribution
for the KMV/CM and the t-model for ν = 3, 5, 10, 20.

For comparison we will take a look at the ratio of the t-loss distribution proper-
ties and the KMV/CM properties, i.e. the multipliers, for each of the 3 portfolios.
Again we use Monte Carlo simulation with 0.5 million runs to produce the empirical
loss distributions of the portfolios of different sizes. The results are again produced
in the following three tables.

10.1 Results and discussion

The three tables 10.1 - 10.3 exhibit that the relative mean is independent of portfolio
size. We have already noticed in the previous comparison of the KMV/CM and the
t-model for portfolio size 14 that the relative mean was independent of default
correlation ρX and of marginal default probability π aswell.

10.1.1 Analysis of each portfolio

For all three portfolios we see that the relative values for the variance, skewness,
kurtosis and expected shortfall (at all levels) is increasing as portfolio size mounts.
Hence our intuition was correct that the impact of the t-copula grows for increasing
portfolio size and that the corresponding loss distribution worsens substantially
relative to the KMV/CM model; the higher ν, the worse.

Consider the multipliers (t-model ν = 20 versus KMV/CM) for portfolio No. 11.
For the portfolio of size 14 we can hardly see any difference in the loss distributions
of the two models. All multiplier values are very close to 1. But for the portfolio
of size 200 the difference is tremendous: double the variance, 6 times the amount
of kurtosis, double the amount of expected shortfall at the level 99.5%! Not to
mention the impact if we let portfolio size increase for the t-model with very high
tail dependence. Consider again portfolio No. 10 in the last sub-table of table 10.1.
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The t-model against KMV/CM gives 20 times higher variance and 50 times higher
kurtosis for a portfolio of size 200! The values of expected shortfall show the same
effect. We can only imagine what an impact this change in copula would have on a
’typical’ credit portfolio containing a few thousand obligors!

10.1.2 Comparison of the portfolios

When scrolling through the tables 10.1 to 10.3 we see straight away that the relative
impact of the t-copula is much weaker on portfolio No. 17 than on the other two
portfolios of higher rating grade. Consider the relative values of ES at the level
99.5% (ν = 3), i.e. the lowest right cell in each of the three tables. The multiplier
for the first two portfolios with high and average credit quality takes a value above
7, where as the one for the lowest rated portfolio is below the value of 2!

10.1.3 Loss histograms

At the end of our investigations on the various models we show a graphical com-
parison of the simulated loss distribution for portfolio No. 11, size 200, for the
KMV/CM and the t-models. The histograms are produced from the loss data re-
trieved from the Monte Carlo simulation. These (unscaled) distributions were cut
off at the level of 100 observations to show more clearly the mass contained in
the tails of the distributions. The histogram is plotted for each of the 5 models
(KMV/CM, t-model with ν = 20, 10, 5, 3).

Figure 10.1 confirms all previous results!
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Table 10.1: Increasing portfolio size for portfolio No. 5.*Two corresponding properties have both value zero.
The ratio is zero divided by zero. We then define the multiplier to have value 1.**Value of KMV/CM property
is zero and corresponding value of t-property is greater than zero.
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Table 10.2: Increasing portfolio size for portfolio No. 11.*Two corresponding properties have both value zero.
The ratio is zero divided by zero. We then define the multiplier to have value 1.**Value of KMV/CM property
is zero and corresponding value of t-property is greater than zero.
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Table 10.3: Increasing portfolio size for portfolio No. 17.
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Figure 10.1: Unscaled loss histograms of portfolio No. 11, size 200, for the various models.
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