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Abstract

The aim of the paper is to analyse the effects of different model specifications, within
a general nested framework, on the valuation of defaultable bonds, and some credit
derivatives. Assuming that the primitive variables such as the risk-free short rate,
and the credit spread are affine functions of a set of state variables following jump-
diffusion processes, efficient numerical solutions for the prices of several defaultable
securities are provided. The framework is flexible enough to permit some degree of
freedom in specifying the interrelation among the primitive variables. It also allows a
richer economic interpretation for the default process. The model is calibrated, and
a sensitivity analysis is conducted with respect to parameters defining jump terms,
and correlation. The effectiveness of dynamic hedging strategies are analysed as well.

JEL Codes: G13, G19



1 Introduction

The aim of this paper is to analyse model risk within the context of credit risk mod-
eling, and more specifically for defaultable bonds and credit derivatives. With the
proliferation of financial losses related to the use of derivative securities risk man-
agement in general, and model risk management in particular has gained attention
in the recent years. Recently, the booming credit risk literature has experienced a
shift towards the so called reduced-form models that rely, basically, on an exogenous
specification of default-inducing processes. The reason is that these models are more
amenable to empirical testing and, given suitable assumptions on recovery rates, al-
low straightforward application of the already available martingale pricing technology.
In this vein, it is also easier to analyse market risk and credit risk together, which
is crucial for versatile financial institutions operating in dynamic and intertwined
environments.
The paper contributes to the credit risk literature in several ways. First, de-

faultable securities are priced in a framework that is unprecedented in its generality.
Second, an extensive analysis of the effects, on valuation, of jump terms in both
riskless interest rates and credit spreads is provided. Third, the influence of corre-
lation between riskless interest rates and credit spreads is also analysed both from
valuation, and hedging perspectives. Although jumps in interest rates recently have
received some attention (see Akgun (2000) and references therein), the presence of
jumps in credit spread dynamics has been so far ignored in both the empirical and
theoretical literature.1 As the distributions implied by observed credit spread dy-
namics are highly leptokurtic the relevance of incorporating jumps into the analysis
becomes clear. There has also been a relatively higher but mostly qualitative interest
in the correlation between market and credit risks, especially from a risk measure-
ment perspective. The analysis in this paper, specifically sets out to quantify the
effects of this correlation in pricing and hedging several defaultable securities. The
framework of the paper is basically as follows. There are three state variables follow-
ing jump-diffusion processes. The diffusion part is of CIR (1985) type. The riskless
short-rate and the credit spread are affine functions of the state variables. There are
three types of jumps. Jumps unique to the interest rate, jumps pertaining to the
credit spread, and jumps common to both processes with a joint jump-size distribu-
tion depending only on time. The diffusion part formulation is such that negative
correlation between credit spreads and interest rates is allowed, and positivity of the
spread is guaranteed. The positivity is no longer guaranteed when one takes into
account the normally distributed jump sizes. Empirically, however, it turns out that
negative state variables are possible only with a very small probability. The model
also is admissible in the sense of Dai and Singleton (1999). Volatilities, drifts, and
intensities can be stochastic provided they are affine in state variables. Such a frame-
work permits one to distinguish the effects of economy-wide shocks from firm-specific

1The empirical evidence for jumps in the dynamics of credit spreads is not lacking. LTCM is
believed to have lost more than $500 million because of a jump of nearly %17 in credit spreads.
Such jumps become especially important when the correlation structure of state variables defining
interest rate and credit risks is substantially altered during financial market turmoil.
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ones, as well as being open to other interpretations for the jump terms. More impor-
tantly, one can see the effects of the interaction between market risk and credit risk.
Tractable solutions of this model are possible using the affine-pricing methodology
developed by Duffie, Pan, and Singleton (1999), and Bakshi and Madan (1999) which
involves decomposing an option-like payoff into principal securities, and valuing each
of these through the Fourier inversion of its characteristic function. Model parameters
can be estimated in two steps as in Duffee (1999) if one assumes away the common
jump term. This is essential for estimation since simultaneous use of the treasury
bond data and corporate bond data to estimate the whole set of parameters would
be cumbersome and highly impecise.
Given this setup, the aim is to analyse the effects, on pricing, of different specifi-

cations regarding the jump terms and the correlation between the riskless short-rate
and the credit spread. The securities that will be priced, as examples, are a de-
faultable bond, a put option on the defaultable bond, a credit spread option, and
a call option on the credit spread. Analysing these credit derivatives with different
payoff structures will allow a better assessment of the relation between market risk
and credit risk, and differential impact of jump terms. In this regard, conducting
sensitivity analysis with respect to relevant parameters may provide further insights.
The efficiency of modelisation can also be tested in this nested framework, in terms
of pricing. It is at this point that an analysis from the perspective of model misspeci-
fication becomes relevant. Aside from pricing issues, improvements gained with more
realistic assumptions in the partial hedging of defaultable securities can be compared
to those of simpler models. Before closing this section, note that any attempt to
quantify model risk is dependent on a chosen benchmark model. The benchmark
model is implicitly assumed to be closer to reality, and the performance, in an ap-
propriately defined sense, of any submodel that is inferior to it can be evaluated and
quantified with respect to the benchmark model. Such an analysis is especially of
importance from the viewpoint of an economic agent trying to select or evaluate a
model to use in pricing, trading, or hedging derivative securities.
Before explaining the theoretical framework it may be illustrative to briefly touch

upon the related literature which would also allow a better comparison with the
present article. There are two, quite distinct, brands of research focusing on the
pricing of credit risk. These are named as structural, and reduced-form approaches.
The structural approach represents and encompasses various extensions of Merton
(1974)’s work on the pricing of corporate debt. In this brand of the literature default
occurs when the firm asset value process hits a lower boundary that can be prede-
termined and fixed (for instance the face value of debt) or endogeneously determined
as the outcome of bargaining between shareholders and creditors. The problem with
such models is that to be realistic they need to specify, rather elaborately, the condi-
tions triggering default and the capital structure of the firm in question. Even with a
complex specification, however, the empirical performance of these models have been
disappointing. Moreover, by their very nature (since default stopping time is not in-
accessible), they sharply underestimate credit spreads for short time horizons. These
and other considerations led researchers to model the default event exogeneously,
as the first jump of a Cox process with certain intensity for instance. Jarrow and
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Turnbull (1995) article is one of the precursors in this area. In their model default
time is exponentially distributed, with constant intensity and the default process is
independent of the riskless interest rate. Their approach involves building trees for
the riskless term structure and the default process, and inferring risk-neutral default
probabilities from the observed market prices of corporate bonds. This model has
been later extended to the case where default time follows a continuous-time discrete
state Markov chain to allow valuation of derivatives based on credit ratings. (See Jar-
row, Turnbull, and Lando (1997), and Lando (1998). There has also been attempts
to recast the HJM (1992) framework to take into account default risk by modeling de-
faultable forward rates directly and then derive the restrictions necessary to rule out
arbitrage. Das and Tufano (1995), and Schönbucher (1998) can be cited as examples.
Yet another subgroup of research within reduced-form models have been initiated by
Duffie and Singleton (1999). Assuming that recovery value, upon default, is propor-
tional to the market value an instant before default they showed that the ordinary
martingale valuation methodology can still be used to value defaultable bonds by
adding an adjustment term to the riskless discount rate. The present paper departs
from these and other previous research in several ways. First, it represents the first
attempt to model credit spreads as jump-diffusions. Second, as explained above the
proposed model is very general in other aspects as well. Third, in the empirical part
accompanying the theoretical pricing framework an extensive sensitivity analysis is
conducted from a model risk perspective.
The paper proceeds as follows: First, the reduced form approach is outlined briefly.

In the next section the theoretical framework is laid out in its full generality, and
transform analysis, and credit derivative valuation are explained. Section 3 deals with
the particular model proposed along with subsections on data and implementation
issues, hedging considerations, and the details of the numerical integration techniques
employed. In Section 4 results are presented and interpreted from a model risk
perspective. Section 5 concludes with a discussion assessing the relevance of the
findings for pricing credit sensitive securities, and for risk management.

1.1 The Reduced Form Approach

In this subsection, we briefly present the valuation formula resulting from the work
of Duffie and Singleton (1999). This formula will be the essential pricing ingredient
for a large part of this paper. Assume that markets are perfect and an equivalent
martingale measure exists. Consider a defaultable claim with a random promised
payoff of H at maturity T . When default occurs at time T d, it is unpredictable, and
it involves a loss rate of L(T d) in the market value of the claim. Hence, the value at
time t of this claim can be written, under the risk neutral measure, as

St = Et

exp
−TΛTdZ

t

rsds

 hHI{T<Td} + S(T d) ¡1− L(T d)¢ I{T≥Td}i
 (1)

Duffie and Singleton (1999) showed that (1) is, under mild conditions2, equivalent to
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St = Et

exp
− TZ

t

Rsds

H
 (2)

with Rt = rt + htLt where ht denotes the hazard rate of the default process. (2)

means that we can value a defaultable claim as if its payoff is riskless, but discounted
at a default-adjusted discount rate, given above by Rt. In this paper we are going
to denote default adjustment term htLt by st and call it somewhat informally as
the credit spread. Note that the same approach can be used to value coupon bonds
as well. Apart from allowing straightforward discounting of payoffs of defaultable
claims, the proportional loss in market value assumption helps preserve the simple
value additivity rule for coupon bonds. (Jarrow and Turnbull (2000))

2 The Theoretical Framework

We operate in the context of a perfect continuous-time economy with a trading in-
terval [0, T ∗], T ∗ being kept fixed. Uncertainty in capital markets is characterised
through a probability space (Ω,=,z, P ), with z = {=(t) : t ∈ [0, T ∗]} denoting the
P−completed, right-continuous filtration generated by a set of state variables follow-
ing jump-diffusion processes. r is the instantaneous riskless interest rate which is
equivalently called as the riskless short rate in this paper. The price at time t of a
riskless zero-coupon (defaultable) bond maturing at T (for 0 < T ≤ T ∗) is denoted by
B(t, T ) (Bd(t, T )). The existence of an equivalent martingale measure is assumed, and
in the following all expectations are taken with respect to this measure unless noted
otherwise.3 The state variables in the economy are denoted by an n-dimensional
strong Markov process uniquely solving the following SDE :

Xt = X0 +

tZ
0

µ(Xs, s)ds+

tZ
0

σ(Xs, s)dW (s) +

tZ
0

J(s)dN(s) (3)

where W is a d-dimensional independent standard Brownian motion, N is a vector

Poisson process of intensity λ(Xt, t), with a random jump-size matrix J(t) whose
distribution depends only on time t, and µ and σ are conformable coefficients that
are affine in the state variables. For additional technical details see Duffie, Pan, and
Singleton (1999). The risk-free short rate, and credit spread are also assumed to be
affine in the state variables. That is,

2An important condition is that jumps in the conditional distribution of S, h, or L occur with
probability zero at the default time T d.

3The particular choice of the equivalent martingale measure is implicitly left to the market, or
to the representative agent, if any. This wave-off is typical in this brand of asset pricing literature.
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µ(x, t) = µ0(t) + µ1(t) · x (4)

σ(x, t)σT (x, t) = σ0(t) + σ1(t) · x (5)

λ(x, t) = λ0(t) + λ1(t) · x (6)

r(x, t) = r0(t) + r1(t) · x (7)

s(x, t) = s0(t) + s1(t) · x (8)

2.1 Transform Analysis and Affine Pricing

In this subsection we use the so called transform analysis methodology to value de-
faultable bonds and some specific credit derivatives. This methodology has been
known, in less general terms, in the finance literature since 1980s and has been since
improved and formalized by Bakshi and Madan (2000), and by Duffie, Pan, and
Singleton (1999). These authors used the technique to value certain options, and
Duffie, Pan, and Singleton (1999) also stated that it could be used to value default-
able bonds as well. However, none of these papers addressed the issue of credit risk
pricing explicitly.
To begin with, define two related objects as follows

Ψrt,T ; a,b(Xt, a
0, b0) = Et

exp
− TZ

t

r(Xs, s)ds

 (a+ b ·XT )ea0+b0·XT
 (9)

and

ΨRt,T ; a,b(Xt, a
0, b0) = Et

exp
− TZ

t

R(Xs, s)ds

 (a+ b ·XT )ea0+b0·XT
 (10)

where r is the riskless short rate and R is the risk-adjusted discount rate. Note
that Ψrt,T ; 1,0(Xt, 0,0) gives the value at time t of a riskless zero-coupon bond pay-
ing $1 at maturity T . Similarly, ΨRt,T ; 1,0(Xt, 0,0) gives the value of a defaultable
bond, assuming, of course, that the assumptions of Section 1.1 hold. The generalized
Feynman-Kač theorem (presented in the Appendix) then implies that

DΨdt,T ; a,b(x, a
0, b0)− d(x, t)Ψdt,T ; a,b(x, a0, b0) = 0

with ΨdT,T ; a,b(x, a
0, b0) = (a+ b · x)ea0+b0·x (11)

where d is equal to r or R depending on the context and where the infinitesimal

generator D has the form
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DdΨt,T ; a,b(x, a
0, b0) =

∂

∂t
Ψd(.)(.) +

∂

∂x
Ψd(.)(.)µ(x, t) +

1

2
tr

·
∂2

∂x2
Ψd(.)(.)σ(x, t)σ

T (x, t)

¸
+

LX
j=1

λj(x, t)

Z
Ω

£
Ψd(.)(x+ J

j, .)−Ψd(.)(x, .)
¤
dF jJ(t) (12)

where F jJ denotes the distribution function of the jump size for the j
th jump type.

J j denotes the jth column of the matrix J. In this expression we have denoted the
non-informative arguments of Ψ by a dot to reduce notational burden. To solve (11),
we first conjecture in our affine economy that

Ψdt,T ; a=1,b=0(x, a
0, b0) = exp [α0(t) + β 0(t) · x] (13)

where the coefficients satisfy the following ODEs:

∂

∂t
α0(t) = d0(t)− β 0(t) · µ0(t)− 1

2
β 0(t)σ0(t)β 0T (t)

+
LX
j=1

λj0(t)

1− Z
Ω

eβ
0(t)·Jj(t)dF jJ(t)


with α0(T ) = a0. (14)

∂

∂t
β0(m)(t) = d(m)1 (t)− β 0(t)µ(m)1 (t)− 1

2
β 0(t)σ(m)1 (t)β0T (t)

+
LX
j=1

λ
j,(m)
1 (t)

1− Z
Ω

eβ
0(t)·Jj(t)dF jJ(t)


with β0(T ) = b0. (15)

Above again di(t) = ri(t) or ri(t) + si(t) for i = 0, 1 depending on whether we are

interested in Ψr or ΨR. Superscript m in parentheses denotes the mth element of the
corresponding vector. For a matrix, it denotes the mth column. For the tensor σ1 it
denotes the corresponding matrix. Then it can be shown that (see the Appendix)

Ψdt,T ; a,b(x, a
0, b0) = Ψdt,T ; a=1,b=0(x, a

0, b0) [α(t) + β(t) · x] (16)
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with the coefficients satisfying the following ODEs:

− ∂
∂t
α(t) = β(t) · µ0(t) + β0(t)σ0(t)βT (t)

+
LX
j=1

λj0(t)

Z
Ω

eβ
0(t)·Jj(t)(β(t) · J j(t))dF jJ(t)


with α(T ) = a. (17)

− ∂
∂t
β(m)(t) = β(t)µ

(m)
1 (t) + β0(t)σ(m)1 (t)βT (t)

+
LX
j=1

λ
j,(m)
1 (t)

Z
Ω

eβ
0(t)·Jj(t)(β(t) · J j(t))dF jJ(t)


with β(T ) = b. (18)

Hence, the assumed affine structure allows us to value rather complex payoffs de-
pending on state variables. The value of such payoffs are completely determined by
the solution of a set of Riccati equations. In some cases closed-form solutions can be
found. A substantial literature exists for the numerical solution of Riccati equations,
hence one can obtain accurate results with fairly standard procedures, assuming that
a solution to the given set of equations exists.

2.2 Valuation of Credit Derivatives

The methodology described above can be extended to value certain derivatives and
vulnerable (defaultable) options. A put option on the defaultable bond, for instance,
has at the maturity of the option, U < T, the contingent payoff, (K − eα0(U)+β0(U)·x)+
whose discounted expectation gives the price of the option. The parameters α0(U)
and β 0(U) are found by backward integration (from time T to U) of the set of Riccati
equations defining ΨR. A version of a credit spread option has the payoff (EB(U, T )−
Bd(U, T ))+ where B(U, T ) is the price of the riskless bond at the maturity of the
option, Bd(U, T ) is the price of the defaultable bond, and E is a fixed number denoting
the exchange ratio between riskless and defaultable bonds. Since the price of the
riskless bond can also be expressed as an exponential affine function of the state
variables, for instance as eα

00(U)+β00(U)·x, it follows that such payoffs can be treated if
we can evaluate expressions of the following form:

Gt(c, d, y) = Et

exp
− UZ

t

r(Xs, s)ds

 ec·XU I{d·XU ≤ y}

 (19)

One can easily note that the price at time t of the put option on the defaultable bond

can be expressed as

KGt [0,β
0(U), ln(K)− α0(U)]− eα0(U)Gt [β0(U), β 0(U), ln(K)− α0(U)] (20)
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Similarly, the credit spread option value is given by

Eeα
00(U)Gt [β

00(U), β0(U)− β 00(U), ln(E)− (α0(U)− α00(U))]
− eα0(U)Gt [β 0(U), β 0(U)− β 00(U), ln(E)− (α0(U)− α00(U))] (21)

G can be calculated by first finding its Fourier transform denoted by zG, and then
inverting it.

zG =
Z
R

eivydGt(c, d, y) = Et

exp
− UZ

t

r(Xs, s)ds

 exp [(c+ ivd) ·XU ]


= Ψrt,U; a=1,b=0(Xt, 0, c + ivd) (22)

Then

Gt(c, d, y) =
1

2
Ψrt,U; a=1,b=0(Xt, 0, c)

+
1

π

∞Z
0

Re

"
Ψrt,U ; a=1,b=0(Xt, 0, c+ ivd)e

−ivy

iv

#
dv (23)

To value some credit derivatives we will also need to compute an intermediary ex-

pression as in the following:

G0t(c
0, d0, y0) = Et

exp
− UZ

t

r(Xs, s)ds

 (c0 ·XU)I{d0·XU ≤ y0}

 (24)

A simple example is a call option on the credit spread with a payoff at maturity U,

of Q(s(U) − s)+ where Q is a constant multiplier, s(U) is an appropriately defined
credit spread at time U, and s is the threshold spread level above which we would
like to insure. Since the credit spread is an affine function of the state variables, that
is, s(t) = s0(t) + s1(t) · x, the value of this option can be written as

Q [(s0(U)− s)Gt [0,−s1(U), s0(U)− s] +G0t [s1(U),−s1(U), s0(U)− s]] . (25)

The corresponding entities to value this option are as follows:

zG0 =
Z
R

eivy
0
dG0t(c

0, d0, y0) = Et

exp
− UZ

t

r(Xs, s)ds

 (c0 ·XU) exp [ivd0 ·XU ]


= Ψrt,U ; a=0,b=c0(Xt, 0, ivd
0) (26)

G0t(c
0, d0, y0) =

1

2
Ψrt,U ; a=0,b=c0(Xt, 0,0)

+
1

π

∞Z
0

Re

"
Ψrt,U ; a=0,b=c0(Xt, 0, ivd

0)e−ivy
0

iv

#
dv (27)
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Before closing this section on pricing a few words regarding vulnerable options are
in order. Vulnerable (defaultable) options are options that themselves have default
risk. Although option writers are required to deposit initial margins and their credit-
quality is checked before they are allowed to write options, they might, in some cases,
not honor their obligations, or only partially honor it. Since the option value at
maturity is equal to its payoff, any portion of the payoff not paid by the writer can
be interpreted as a percentage loss in the value of the option at that time; hence
the recovery of market value assumption is directly applicable. We can use the same
methods presented above to value such options. In fact the transform methodology is
so powerful that it peven permits the valuation of defaultable options on defaultable
bonds when the default processes for the option and the bond can be correlated. In
such a case it is necessary to enlarge the set of state variables defined before to include
those that govern the default process for the option. Moreover, the discount rates
appearing in Ψ and in G should be changed to the default-risk adjusted discount
rates, defined as R(t,Xe) = r(t,X) + s(t,Xe), where Xe denotes the enlarged set of
state variables, and X is the original set.

3 Empirical Analysis

In this part we will lay out the main framework used in the empirical analysis. In
the framework there are three state variables having dynamics as shown below.

dX1(t) = k1(θ1 −X1(t))dt+ η1
p
X1(t)dW1(t)

+ Js(t)dN
λs
s (t) + Jsc(t)dN

λ(t) (28)

dX2(t) = k2(θ2 −X2(t))dt+ η2
p
X2(t)dW2(t) (29)

dX3(t) = −k3X3(t)dt+ ρ
p
X2(t)dW2(t) +

p
γX2(t)dW3(t)

+ Jr(t)dN
λr
r (t) + Jrc(t)dN

λ(t) (30)

s(t) = s0 +X1(t) +X2(t) (31)

r(t) = r0 +X2(t) +X3(t) (32)

The Brownian motions are independent of each other. The intensity of the Pois-
son processes are allowed to depend, in an affine way, on the state variables. This
specification is admissible in the sense of Dai and Singleton (1999), which means ba-
sically that conditional variances of the state variables are positive. In the Appendix
it is shown that the proposed affine structure indeed is admissible. I have chosen
to set conditional variances depend on only two of the state variables to obtain a
specification that is rich enough to fit empirical dynamics of riskless interest rates
and credit spreads and at the same time to allow more degrees of freedom for the
behavior of correlation among the state variables. The framework as specified above
also conforms to the affine structure stipulated earlier in (4) through (8). The riskless
interest rate and the credit spread are affine combinations of these state variables as
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in (31), and (32). The formulation of the diffusion parts of the state variables guar-
antees that the credit spread will never be negative. This is no longer the case in the
presence of jumps, especially when jump sizes are normally distributed as it is the
case here. Note that the second state variable as defined above is never negative and
the other state variables can become negative only with very small probabilities (see
an example in the Appendix). Given that the riskless interest rate and the credit
spread are simple sums of the first and the third state variables with the second state
variable as shown in (31) and (32) it is unlikely to encounter problems emanating
from negativity in an empirical context taking also into account the fact that model
parameters are estimated from real data that implies positive interest rates and credit
spreads. Resuming our discussion into the merits of the model, negative correlation
between the credit spread and the riskless interest rate (ρrs) is allowed in this frame-
work without perturbing its essential characteristics. This is important as Dai and
Singleton (1999) argue that the dynamics of interest rates in U.S. imply negatively
correlated state variables in an affine model. In addition, negative correlation between
credit spreads and riskless interest rates was found in empirical studies by Longstaff
and Schwartz (1995), and Duffee (1999). Another merit of this framework is that
it permits time-varying conditional correlations and variances due to the fact these
entities are driven by a subset of the state variables which are themselves random
and subject to jumps. Hence ρrs will be time-varying and subject to jumps as well.
Note that three types of jumps are considered in the benchmark model. The

jumps on the state variable X1 (X3) are denoted by subscript s (r) to emphasize
the fact that they affect only the credit spread (the interest rate). It is plausible
that some economic conditions would shock credit spreads but not riskless interest
rates, and vice versa.4 Moreover, one can expect that conditional on an economic
shock to the credit spread (interest rate) the interest rate (the credit spread) will be
perturbed as well. These situations are taken into account by introducing a common
jump term to the state variables X1and X3. The jump size of this common jump
term follows a bivariate normal distribution. Js and Jr are also assumed to follow
normal distributions. The normal distribution assumption is made for computational
purposes, but it is not against economic sense either.5 Another interpretation is that
state variable X2 denotes a common macroeconomic factor affecting both interest
rates and credit spreads, X1 is a variable with a macroeconomic diffusion component
influencing only credit spreads, with a firm-specific jump component Js, and with a
jump component (common with X3) resulting from economy-wide forces. Such an
interpretation is useful if we are interested in modeling the credit spread of a company,

4One may argue that an increase in credit spreads can invoke”flight-to-quality” and will almost
always entail a change in riskless interest rates. Although this is an often observed phenomenon in
bond markets, it is suspect whether it is so fast to qualify as a jump, and in any case it is an ex-
post phenomenon. If the adjustment is instantaneous, then such flight-to-quality events are better
characterized, ex-ante, by a common jump term that is also allowed in our framework.

5Over a long enough period of time one will, a priori, expect both positive and negative jumps
with more or less equal probabilities since we assume that the state variables are stationary. One
also expects that large jumps occur with small probabilities, small jumps with relatively higher
probabilities. Although many probability distributions can be found to satisfy these weak criteria,
normal distribution can be chosen to be one of them.
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or a group of similar or homogeneous companies.

3.1 Dynamic Hedging in the face of Default Risk

In this section we would like to evaluate the performance of dynamic hedging strate-
gies in the presence of default risk. Although perfect hedging may not be feasible in
this context, it is still useful to compare the performance of partial hedging strate-
gies within a nested model. We are particularly interested in assessing the strategies
that rely on a model taking into account the correlation between the riskless short
rate and the credit spread versus strategies based on a simpler model. In order to
better isolate the effects of this correlation term on the hedging performance, and for
computational reasons, we consider a modified version of the original model without
the jump terms. The benchmark model in this section is, thus, as follows:

dXi(t) = ki(θi −Xi(t))dt+ σi
p
Xi(t)dWi(t) for i = 1, 2, 3. (33)

where Wi are independent Brownian motions for each i. (see the previous section
for parameter estimates)

s(t) = X1(t) + ρ1X2(t) (34)

r(t) = ρ2X2(t) +X3(t) (35)

The inferior model that does not allow for a relation between s(t) and r(t) is
obtained by setting ρ1 = ρ2 = 0 in (34) and (35).6 Given that frequent trading in
defaultable corporate bonds may not be feasible in reality because of low liquidity,
another inferior model that does not at all take into account default risk is consid-
ered. We take a put option written on a defaultable bond as the instrument to be
hedged. Hedging of such an option is of great practical importance for institutions
selling them to credit risk sensitive parties. To obtain a delta-neutral hedge we must
make sure that the hedge portfolio, comprised of the put option to be hedged and
the hedging instruments, is instantaneously insensitive to changes in the state vari-
ables. The hedging instruments can be chosen with some flexibility as long as their
values are driven by the same set of state variables as the put option. However, we
choose the underlying defaultable bond, and two other defaultable bonds with dif-
ferent maturities (one that has the same maturity as the option, and the other that
matures three months later). The trader implementing the first inferior strategy uses

6Dai and Singleton (1999) argue that multifactor square-root models as specified here permit rich
dynamic behaviour for conditional variances but restrict the correlation structure. It is important
to realize that they refer to the unconditional and conditional correlation among state variables
driving the term structure in a model where riskless interest rate is an affine function of these state
variables. Such a restriction of the correlation structure among state variables has no effect in our
analysis since the correlation between the riskless interest rate and the credit spread is driven by
exogenous parameters and the values of the state variables and not by the correlation among the
state variables.
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two bonds for the hedge (the underlying defaultable bond, and a second one matur-
ing three months later than the option maturity) and the trader implementing the
second inferior strategy just uses a treasury bond that has the same maturity as the
underlying defaultable bond. Before proceeding any further we explain briefly how
to find the value of the put option on the defaultable bond when the characteristic
function of the underlying source of randomness is known explicitly. The details of
this approach can be found in Chen and Scott (1995). While they evaluate a call op-
tion on a riskless bond, the procedure is essentially the same. Note that the value of
the put option, with E denoting as usual the expectation under risk-neutral measure,
is

P (t, U,X) = E

exp
− UZ

t

r(u,X)du

 (K −Bd(U, T ))I{KÂBd(U,T )}
 (36)

which can be written (after changing further to forward measure)

P (t, U,X) = B(t, U)[KI1 −Bd(U, T )I2] (37)

where I1 and I2 denote probabilities of being in the money under risk-neutral and
forward measures, respectively. Note that

Bd(U, T ) =
3Y
i=1

ai(U, T ) exp(−bi(U, T )Xi(U)) (38)

similar to the one dimensional case in CIR (1985). The parameters ai and bi are

exactly as defined in CIR (1985) (except that here they are indexed, and b2 should
be adjusted by (ρ1 + ρ2)) and are not reproduced here. (38) implies that

−b(U, T ) ·X(U) ≤ ln
µ

K

a1(U, T )a2(U, T )a3(U, T )

¶
(39)

determines the exercise boundary. As it is well known, a linear combination of non-

central χ2 variables does not have any explicit probability density representation.
Hence calculating the probabilities above is very cumbersome. However, the fact
that in this case we have a closed-form expression for the characteristic function of
z = −b · X makes things a lot easier. This characteristic function is basically the
product of the individual characteristic functions of the state variables, since in this
section it is assumed that the state variables are independent. Moreover, the state
variables still have non-central χ2 distributions under the forward measure, save an
adjusment that makes sure that the defaultable bond price is a martingale under

this measure.7 Hence Φz(v) =
3Q
i=1

ΦXi(−biv). Consequently, I1 and I2 defined above
can be calculated through Fourier inversion of Φz(v), with Φz(v) defined according to

7Details of this and other implementations are available from the author.

12



necessary adjustments for I2. The details of the numerical implementation of these
inversions are given in the next section.
Resuming our discussion on hedging, we now describe the details of the hedging

strategy. Denote the vector of values for the hedging instruments by H(t, U,X), then
the value at time t of the hedge portfolio is given by

V (t) = P (t, U,X) +NH(t, U,X) (40)

where N denotes the number of hedging instruments to be instantaneously held
in the hedge portfolio. Setting dV (t)

dX
= 0 yields

N = −
µ
dH

dX

¶−1
dP

dX
(41)

In (41), dH
dX
is a matrix with a typical element

dHij
dXj

denoting the sensitivity of the

instrument i to state variable j,and dP
dX
is a vector of option value sensitivities to state

variables. The elements of dH
dX
are easily calculated from (38), while

dP

dXi
= −b̄i(t, U)P (t, U,X)

+B(t, U)

·
K
dI1
dXi

+Bd(U, T )

µ
bi(T, U)I2 − dI2

dXi

¶¸
(42)

where the bar over b means that it pertains to the riskless bond, and is therefore not

adjusted for default. dI1
dXi

and dI2
dXi

can be found using the scheme shown in (47), after
replacing the characteristic functions by their derivatives with respect to the state
variables in the same expression. The next step is to simulate, according to Milstein
(1974) scheme, a path of state variable realizations at each time the hedge portfolio
is rebalanced. For the purposes of this problem, 50 rebalancing in a 6 month period
(which is the maturity of the option to be hedged) is applied. After simulating 1000
paths, and taking the differences among the values of the hedge portfolios for the
strategies considered above we can obtain the average hedging errors in each case.
Figures 21 through 24 show the results of this exercise. Before embarking on an
interpretation of the results in the next section, we present, in the following, a brief
account of the numerical implementation procedures used in computations.

3.2 Data and Implementation Issues

A cross-section of bond prices is used for calibration of the model. The data is
provided by BARRA and is available in the website of CNNfn. The prices are
round-lot offer prices obtained from a network of bond dealers in U.S.A. There are 32
corporate bonds (mostly industrial companies) non-callable, and rated between CCC-
B. The first corporate bond matures on 15 April 2001, and the last on 1 December
2008. The number of treasury bonds is 85, with earliest maturity on 31 October
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2000, and the latest on 15 November 2008. Given this data, the next step is to obtain
plausible parameter estimates for the empirical analysis. For this purpose, the sum
of the squared differences between theoretical and observed bond prices is minimized.
Some may argue against constructing the objective function in this quadratic fashion,
asserting that it may imply a controversial utility function for the trader, and that
it does not address the heteroscedasticity problem usually inherent in cross-sectional
bond data. The aim of this section, however, is not to address these issues but to
obtain, as stated before, sensible parameter estimates. Note that in (28)-(30), if the
parameters pertaining to the common jump process are known, a two-step estimation
strategy becomes feasible in that parameters for the riskless rate process can be
estimated from the treasury bond data and those for the credit spread process can be
estimated from the corporate bond data. This reduces the number of parameters to
be estimated at each step which should increase their precision. To accomplish this
two-step estimation strategy, therefore, the parameters of the common jump term
are simply assigned plausible values. Note that obtaining theoretical bond prices
requires, in this context, solution of a set of Riccati equations. For longer term
bonds, the solution of these equations can be problematic. I have discovered that
dividing the region of integration into smaller intervals, and taking the results of
a previous interval integration as starting values for the next interval works well.
Existence of a solution for these equations necessarily imposes restrictions on the
parameters. While implementing the optimization procedure, if the lower and upper
bounds for the parameters are not specified judiciously, the procedure may enter
these ”forbidden” regions as it checks different directions for improvement.8 It has
been found out that the parameters relating jump intensities to state variables are
especially problematic. Another problem regarding optimisation is the tendency of
the procedure to converge to the nearest optima, which necessitates trying several sets
of starting values. The parameter estimates obtained as such are presented below.
The following represent the restrictions imposed on the model. All the parameters

are on a per-year basis.9

r0 = 0, (Constant term in the riskless interest rate specification)
s0 = 0, (Constant term in the credit spread specification)
λij = 0 i, j = 1, 2, 3. (Jump intensity sensitivities with respect to state variables.

This amounts to assuming constant intensity for each Poisson process)
µjsc = 0.001 (The mean jump size for credit spread, due to the common jump

term)
µjrc = 0.003 (The mean jump size for riskless interest rate, due to the common

jump term)

8Nearly ten bonds had to be eliminated from the whole of the data set because they seemed
to be mispriced with regard to other bonds. After these bonds were eliminated the optimization
procedure visited the forbidden regions much less frequently.

9One should not, however, overinterpret these parameters since they are obtained under the risk-
neutral measure. This would not pose any problem here since the focus is mainly on valuation and
sensitivity analysis. Risk premiums for the underlying sources of randomness become important and
require explicit treatment if one is concerned about assigning market probabilities to certain events.
(See Akgun (2000) for a setup in which risk premiums for diffusion and jump risks are estimated
explicitly)
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σjsc = 0.0004 (The standard deviation of the jump size for credit spread, due to
the common jump term)
σjrc = 0.0015 (The standard deviation of the jump size for riskless interest rate,

due to the common jump term)
ρjc = 0.01 (Correlation of jump sizes in the bivariate common jump size distribu-

tion)
The following parameters (most of which are self-explanatory from (28)-(30)) come

from the calibration of the general model.
η1 = 0.0027 k1 = 0.6531 θ1 = 0.0115
η2 = 0.0152 k2 = 0.3426 θ2 = 0.0452
γ = 0.3761 k3 = 0.4737 ρ = −0.1034
µjs = 0.0009 (Mean credit spread jump size)
µjr = 0.0052 (Mean riskless interest rate jump size)
σjs = 0.0012 (Standard deviation of the credit spread jump size)
σjr = 0.0041 (Standard deviation of the riskless interest rate jump size)
λ10 = 2.6444 (Constant intensity of the credit spread jump)
λ20 = 3.1366 (Constant intensity of the riskless interest rate jump)
λ30 = 2.2171 (Constant intensity of the common jump term)
x1(t) = 0.0064 (Current value of the first state variable)
x2(t) = 0.0107 (Current value of the second state variable)
x3(t) = 0.0361 (Current value of the third state variable)

The following parameters come from the calibration of the model used for the
hedging exercise in the previous section.
k1 = 0.4926 θ1 = 0.0154 σ1 = 0.0010 x1(t) = 0.0111 ρ1 = 0.6278
k2 = 0.5133 θ2 = 0.0101 σ2 = 0.0012 x2(t) = 0.0152 ρ2 = 0.9744
k3 = 0.9912 θ3 = 0.0698 σ3 = 0.0047 x3(t) = 0.0499

3.3 Numerical Integration

In this part we explain the details of the numerical integration schemes used to calcu-
late derivative prices. The valuation procedure works as follows. First, we represent
the contingent payoff of the credit derivative in terms of an intermediate mathemat-
ical object that was denoted by G. The payoff described by G is also contingent on
the random state variables hence G is difficult to compute as it requires multidimen-
sional integration of the joint density function of the random variables defining the
contingency event. Computing the Fourier transform of G, however, simplifies the
problem since the transform results in a payoff structure that has no contingency
event. In fact, this payoff structure turns out to be a version of Ψ that we defined
before. Recall that Ψ can be calculated by solving a set of ODEs which is a much less
daunting task compared to multidimensional integration. Since the Fourier transform
of G can be quite easily and accurately computed the only thing that remains is to
obtain the inverse transform of the resulting object to get the value of G. Note that
in this way we need to calculate a one dimensional integral only. Hence the beauty of
this method is that it reduces multidimensional integration problems to the compu-
tation of a one dimensional integral. However, the resulting integrand is oscillatory
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and care should be exercised to compute it accurately. This inverse Fourier trans-
form can, in some cases, be calculated by FFT (Fast Fourier Transform) methods,
specialized quadrature methods, or better yet using some of the algorithms devel-
oped specifically for Laplace or Fourier inversion problems. Most of these specifically
designed algorithms work very well for certain type of integrand functions, but not
so well with the others. If the integrand is itself numerically calculated (as it is the
case here) then algorithms designed to accommodate more general integrands can be
used. After experimenting with several of these algorithms we have found that the
following approximations seemed stable and accurate for a wide range of parameter
values. Recalling the expression for G,

Gt(c, d, y) =
1

2
Ψrt,U; a=1,b=0(Xt, 0, c)

+
1

π

∞Z
0

Re

"
Ψrt,U ; a=1,b=0(Xt, 0, c+ ivd)e

−ivy

iv

#
dv (43)

we approximate the integral (after dropping unnecessary notation)

1

π

∞Z
0

Re

·
Ψ(.)e−ivy

iv

¸
dv (44)

by

−1
π

UbX
n=0

Im
£
Ψ((n+ 0.5)4ve−i4vy)¤

n+ 0.5
(45)

as in Pan (2000). Two types of errors are introduced with this scheme. If U b is
not large enough, there is a truncation error, and if 4v is not small enough there is
discretization error. A good choice of4v is especially important given the oscillatory
nature of the integrand. Shephard (1991) discusses a procedure to efficiently choose
the discretization step. The procedure relies on controlling the probabilities of tail
events by means of Chebyshev’s inequality and results in

2π

4v = max(y − µz, µz − y) +
σz√
²

(46)

where ² is the desired level of error, z is the random variable in question (for
instance, in (19) z = d·XU , a linear combination of the state variables that determines
the exercise boundary), µz and σz are its mean and standard deviation, respectively.
The upper bound can be pinpointed as well, if Ψ(.) has a closed-form expression,
since in this case it is possible to analyse its asymptotic behavior. Otherwise, one
needs to strike a balance between accuracy and computer time. I have found out
that U b = 5000 is enough to replicate Vasicek (1977) bond option prices for certain
strike prices. However, the upper bound may need to be increased as the options
go deeply out-of-the-money. For the multivariate square-root model of Section 3.1,
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we use the following approximation due to Bohmann (1970) that is more suitable for
cases in which the characteristic function of z is known in closed-form. Given that
the exercise event for the option is indicated by {d ·XU ≤ y}, the probability of this
event can be approximated by

P (z ≤ y) = hy

π
+
2

π

UbX
u=1

sin(hyu)

u
Re[Φ(hu)] (47)

where Φ(v) is the characteristic function of z. The discretization step, h, can again

be found from (47) above replacing y by ln
³

K
a1(U,T )a2(U,T )a3(U,T )

´
. However, although

less ad-hoc, choosing the upper bound is more problematic in this case, and requires
solving

¯̄
Φ(hU b)

¯̄
U b

=
yhπ²

4
(48)

for U b. There is no guarantee that the precision will increase as we increase the upper

bound. As the parameters (such as time to maturity, strike price, maturity of the
underlying bond etc.) defining the option to be valued change, the discretization step
and the upper bound have to be re-calculated. With an appropriate starting value
that again needs to be adjusted as the fundamental parameters change, the nonlinear
equation in (48) is solved by a procedure that combines the well-known bisection and
secant methods, and is very fast.
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4 Results

In this section empirical results are presented and interpreted. The empirical analysis
mainly focuses on three issues: The sensitivity of the defaultable claim values to
parameters characterising jump terms, the effects of the correlation between the credit
spread and the riskless short rate on valuation, and a comparative study of the
effectiveness of dynamic hedging strategies. The characteristics of the defaultable
claims that have been analysed in this section are as follows: First, we consider a
defaultable bond that promises to pay $1 at its maturity in two years. In fact, without
loss of generality, all the bonds riskless or defaultable, considered in the empirical
section as underlying to some derivative security or by themselves, have the same
maturity of two years, the promised payoff of $1, and assumed to be zero-coupon.
Second, in the analysis, a put option on the defaultable bond is considered. The
option has six months to maturity and a strike price of 0.95. Such options provide
protection against both interest rate risk and credit risk, hence maybe expensive if
the intention is to protect only against one type of risk. Third, we take up a specific
type of credit option particularly useful for bond issuers borrowing on a floating basis.
This is a call option on an appropriately defined credit spread that determines the
credit risk premium that the bond issuer has to pay. If there is an increase in this
credit spread, the issuer would face higher borrowing costs. However, these costs
may be eliminated if the bond issuer also holds the call option which will payoff
over a certain spread threshold similar to the strike price of an ordinary call option.
Of course, this payoff would be small, but can be adjusted by a simple multiplier.
Without loss of generality we set this multiplier to 1, set the spread threshold to one
percent, and assume that the option maturity is six months. The last defaultable
security analysed is the so-called credit spread option which basically gives its holder,
at the maturity of the option, the right to exchange the underlying defaultable bond
for an otherwise similar riskless bond. In the computations the exchange ratio is set
to one, and the option maturity is again six months. Note that unless the underlying
defaultable bond and the riskless bond are affected differently from interest rate risk,
these options provide protection against credit risk. See Section 2.2 for mathematical
expressions of the payoff functions for these credit derivatives.
Figures 1-5 show how the values of the riskless and the defaultable bond change

with respect to changes in some of the parameters. As the intensity of the any type
of jump in this model increases, one would expect a reduction in bond prices due to
a higher rate of discounting. In fact this is exactly what we observe except that the
riskless bond value is not influenced by changes in spread jump intensity or size which
is obvious. Even the defaultable bond, however, is not very sensitive to changes in
the intensity of credit spread jumps. It seems that the jumps in interest rates are
more important to the valuation of defaultable bonds than the jumps in the credit
spread itself, and this is so whether one considers the effects of intensity or jump
sizes. This can be deduced from the slopes of the dotted lines in figures 1,2,4, and 5.
Figure 6 depicts the values of the riskless and the defaultable bond with respect to
maturity. One can observe that the difference in their values increases as maturity
increases, which is to be expected since the defaultable bond becomes more and more
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likely to default as time passes. Figure 7 shows the relation between bond values and
the correlation of riskless interest rate and credit spread changes. The correlation
coefficient is perturbed by varying the values of the parameter ρ in the range [-2,2]
while keeping the current values of the state variables and other parameters fixed. It
can be seen that the correlation coefficient does not affect neither bond’s value over
a wide range. As the correlation gets near to -1 or 1, however, there is a substantial
increase in the value of the both riskless and defaultable bonds. At times of market
turmoil, correlation is driven by in the changes of not one parameter only, but in
several parameters. Moreover, the state variables may also change drastically. To
make things worse, even the whole model driving security values may change. Hence,
the analysis concerning correlation in this paper is only suggestive, and hopefully is
a precursor to full-fledged studies on the issue of correlation.
The next series of figures are concerned with the put option on a defaultable bond.

In Figure 8 we observe that the value of the put option is actually more sensitive to
the intensity of jumps in credit spreads than that of the jumps in interest rates,
which may, at a first glance, appear to be contradictory with figures 1-3. Note that
although an increase in interest rate jump intensity would decrease the value of the
defaultable bond, thus increasing the value of the put option; higher interest rates
would also mean higher discounting of the payoff thus reducing the value. The results
so far indicate that although one may perhaps justify ignoring small jumps in credit
spreads for the valuation of bonds, this omission would lead to considerable pricing
errors when one is interested in the valuation of a put option on a defaultable bond,
or in any other option to generalize this insight. The interpretation of figures 9 and
10 is straightforward in that any increase in mean jump sizes that would reduce the
value of the underlying bond, is likely to increase the value of the put option. Figure
11 shows the value of the put option with respect to correlation.10 The observation
here is that as the correlation gets near to -1 or 1 the value of the put option becomes
smaller as the value of the underlying bond increases. At the most extremes, however,
there is an increase in the value of the option. It remains to be seen whether this
is an artifact of parameter over-perturbation. The interesting result is that the put
option has its highest value for a correlation coefficient near zero. This makes sense
as well since the underlying bond value is lowest around that range. Figures 12-14
display the results for the call option on credit spread. As expected, an increase
in spread jump intensity and/or size increases the value of the call option while an
increase in the same parameters for the interest rate jump decreases its value. This
is because, unless the cash multiplier Q depends on the level of interest rates, the
riskless interest rate serves only for discounting purposes for this type of derivative.
It is also apparent that the value of the call option is much more sensitive to jumps
in credit spreads rather than those in the riskless interest rate, suggesting that, in
this case, discounting is of a secondary importance compared to the magnitude of the
option payoff. In addition, as the level above which we would like to insure increases
(which means we are willing to absorb most of the credit risk ourselves) the value of
the call option should decrease. This is observed in Figure 15. The value of the call

10This figure, along with most others, has been obtained by evaluating the relevant function over
a small number of points. It has not been smoothed by interpolation to preserve its original shape.
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option with respect to correlation is shown in Figure 16. It is evident that correlation
does not influence much the value of the call option on credit spread. The payoff of
this option is determined by how much the current level of the credit spread exceeds
the given threshold. The parameter ρ does not affect this payoff. Hence perturbing
ρ has an effect on the value of the call option only through its slight influence on
the riskless interest rate, that is, through discounting. The next set of figures are
concerned with the spread option. In Figure 17, it can be observed that an increase
in the intensities of spread jumps, and common jumps (interest rate jumps) increase
(decrease) the value of the spread option, though the reduction of value occurs at a
much lower rate. This should not be interpreted as to belittle the role of interest rate
jumps in general. In this specific case, the effects, on the payoff of the option, of these
jumps cancel each other and only a small discounting effect remains. In other cases,
payoff and discounting effects may work in the same direction. Indeed, when one
considers the effects of jump sizes rather than intensities, even the small discounting
effect mentioned before gets rather stronger as it is evident from Figure 18. Figure
19, in turn, backs up Figure 17 in emphasizing the role of spread jumps, in that
they increase the value of the option by decreasing the value of the defaultable bond.
Obviously, if one expects increasing uncertainty regarding credit spreads, the right to
exchange a defaultable bond for a pre-fixed number of riskless bonds become more
valuable. Figure 20 concludes our analysis of the sample credit derivatives. In this
figure, it can be noted that the value of the spread option with respect to correlation
is rather similar to that of bonds displayed in Figure 7. Nevertheless, to account for
the sharp increases in value at both extremes of the correlation range it should be
the case that the defaultable bond value increases less, relative to the riskless bond
over this range, or that it is discounted even more heavily.
In this part, we interpret the results of the dynamic hedging strategies details of

which have been outlined earlier in Section 3.2. We consider a trader who shorts a
put option on the defaultable bond, and uses the proceeds of this sale to hedge his
position. The option has six months to maturity, and a strike price of 0.95. Figure 21
displays the results when he ignores the correlation. In Figure 22, he ignores credit risk
altogether and uses only treasury bonds for hedging. Although this may seem naive,
low liquidity in defaultable corporate bonds may force the trader to do so. Whatever
the reason, undertaking such an analysis is useful in terms of quantifying the effects of
this inefficient hedging strategy, and emphasizing the importance of credit risk from
a hedging perspective. The values displayed in these figures are average absolute
hedging errors. The trader may also be concerned with the magnitude of hedging
errors with respect to the initial value of the put option. The values of the put option
for various combinations of correlation defining parameters are shown in Table I.
From figures 21, and 22, it can be noted that the hedging errors are much lower for
the trader ignoring the correlation between the credit spread and the riskless interest
rate compared to those of the trader ignoring credit risk altogether. In Figure 21,
it is interesting to note that when ρ1 + ρ2 = 0 the hedging errors are approximately
zero. This makes sense since in this case the trader is essentially using the true model
to hedge the option. The disparity between the true model and the model that the
trader uses is largest when ρ1 + ρ2 is large. In our case, ρ1 and ρ2 are allowed to
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vary between −1 and 1, so ρ1 + ρ2 = 2 is at a maximum. The hedging error for this
case is largest as can be observed from Figure 21. Finally, figures 23, and 24 display
the corresponding results for a put option that has a maturity of one year. As time
to maturity increases the errors seem to accumulate as it implied by the figures. To
resume the findings in this part: the empirical results indicate that hedging options
on defaultable corporate bonds using treasury bonds (thus ignoring credit risk) may
result in large hedging errors, that ignoring correlation is also likely to lead to errors,
though smaller in magnitude, and that as the time to maturity of the option to be
hedged increases hedging errors increase as well.

5 Conclusion

In this paper we have proposed a general framework for the valuation of default-
able securities. The transform analysis used in the paper is its first application to
the valuation of credit risky securities. The proposed model is a multivariate affine
structure in which state variables follow jump-diffusion processes. Negative correla-
tion between the credit spread and the riskless interest rate is allowed in the model,
as well as time-varying conditional correlations and variances. The proposed affine
structure is admissible in the sense of Dai and Singleton (1999), and allows multiple
economic interpretations for the state variables. Within this framework, defaultable
bonds, a put option on the defaultable bond, a call option on the credit spread, and a
credit spread option are valued. Valuation of vulnerable options is discussed as well.
The model is calibrated to a cross-section of bond prices and sensitivity analysis is
conducted with respect to parameters defining jump terms, and correlation. The per-
formance of dynamic hedging strategies is analysed with respect to the correlation
between the credit spread and the riskless interest rate. The results obtained show
that both types of jumps, spread and interest rate, can be important in the valuation
of defaultable securities depending particularly on whether one is valuing a bond or
an option on the bond. The effects of correlation on the values of credit derivatives
are also quite context dependent. Nevertheless, the findings indicate that particular
attention should be paid for extreme correlation coefficients for all cases, since the
effects on value may be enormous. The findings regarding the hedging strategies
show that ignoring default risk in hedging options on defaultable bonds can lead to
substantial hedging errors irrespective, largely, of the correlation structure in the true
model. Errors, though smaller in magnitude, also follow if the correlation between
the riskless interest rate and the credit spread is ignored.
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7 Appendix

Theorem 1 Generalized Multidimensional Ito lemma: Let X = (X1,X2, ...,Xn)
be an n-tuple of semimartingales as specified in (3). Then f(Xt, t) is a semimartingale
and,

f(Xt, t) =

tZ
0

fs(X, s)ds+

tZ
0

fX(Xs, s) · dXc
s +

1

2

tZ
0

dXT
s fXX(Xs, s)dXs

+

tZ
0

[f(Xs + J, s)− f(Xs, s)] · dN(s) (49)

where Xc denotes the continuous part of the semimartingale, J shows a column of
the jump size matrix J, and superscript T denotes the transpose operator.

Proof. See Protter (1992).

Theorem 2 Generalised Multidimensional Feynman-Kač: Let Xt be an n-
dimensional jump-diffusion (more formally, a semimartingale) process as specified in
(3). The ordinary Feynman-Kač theorem applies in this setting as well, taking into
account some additional technicalities. That is,

Df(x, t)−m(x, t)f(x, t) + h(x, t) = 0, (x,t) ∈ Rn × [0, T )
with f(x, T ) = g(x). (50)

Then

f(x, t) = Ex,t

 TZ
t

ϕt,sh(Xs, s)ds+ ϕt,Tg(XT )


with ϕt,s = exp

− sZ
t

m(Xu, u)du

 (51)

iff f(x,t) is a solution to (50).

Proof. Proof. (Informal) Duffie (1996) proves the theorem for diffusions. The
extension to jump-diffusions follows by an appropriate manipulation of infinitesimal
generators. Let Y(s) = f(Xs, s)ϕt,s for s ∈ [t, T ]. Then

dYs = [D
cf(Xs, s)−m(Xs, s)f(Xs, s)]ϕt,sds+ fX(Xs, s)σ(Xs, s)ϕt,sdW (s)

+ ϕt,s[f(Xs + J, s)− f(Xs, s)] · dN(s) (52)

where Dc denotes the continuous part of the generator, and J, as before, shows a
column of the jump-size matrix J. Integrating (52), taking expectations, and arranging
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yields

Ex,t[Y (T )] = f(x, t) + Ex,t

 TZ
t

ϕt,s[Df(Xs, s)−m(Xs, s)f(Xs, s)]ds
 (53)

=⇒ f(x, t) = Ex,t

 TZ
t

ϕt,sh(Xs, s)ds+ ϕt,Tg(XT )

 (54)

where in going from (53) to (54) we have used (50).

Proof of (16): For ease of notation let Ψdt,T ; a=1,b=0(x, a
0, b0) = φ(.) in (16). Then

φ(.) [α(t) + β(t) · x] should satisfy (11). Hence
DΨdt,T ; a,b(x, a

0, b0) = {Dφ(.)− r(x, t)φ(.)} [α(t) + β(t) · x]
+ φ(.) [αt(t) + βt(t) · x] + µ(x, t)φ(.)β(t)
+ β(t)φX(.)σ(x, t)σ

T (x, t)

+
LX
j=1

λj(x, t)

Z
Ω

£
φ(x+ J j, .)β(t)J j

¤
dF jJ(t) (55)

where

Dφ(.) = φt(.) + µ(x, t)φX(.) +
1

2
tr
£
φXX(.)σ(x, t)σ

T (x, t)
¤

+
LX
j=1

λj(x, t)

Z
Ω

£©
φ(x+ J j, .)− φ(x, .)ª [α(t) + β(t) · x]¤ dF jJ(t) (56)

Using φ(.) = exp [α0(t) + β0(t) · x] , simplifying, and utilising the affine formulations
in (4) through (8), yields the ODEs in (17), and (18).

Identification of the Riccati Equations:
For the empirical analysis we specialize the more general theoretical framework of

Section 1. The benchmark model laid out in Section 3 necessitates that we rewrite
the two sets of Riccati equations derived in Section 1 in terms of the benchmark
model. This is done in the following. Note first that the dynamics of the three state
variables in the benchmark model can be rewritten as follows:

d

 X1(t)
X2(t)
X3(t)

 =

 k1 0 0
0 k2 0
0 0 k3

 θ1 −X1(t)
θ2 −X2(t)
−X3(t)

 dt
+

 η1 0 0
0 η2 0
0 ρ 1


p
X1(t) 0 0

0
p
X2(t) 0

0 0
p
γX2(t)

 dW1(t)
dW2(t)
dW3(t)


+

 Js(t) 0 Jsc(t)
0 0 0
0 Jr(t) Jrc(t)

 dNλs
s (t)

dNλr
r (t)

dNλ(t)

 (57)
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This along with (4) through (8) yield

µ0(t) =

 k1θ1
k2θ2
0

 , µ1(t) =
 −k1 0 0

0 −k2 0
0 0 −k3

 (58)

σ0(t) = 03∗3, σ11(t) =

 η21 0 0
0 0 0
0 0 0

 , σ21(t) =
 0 0 0
0 η22 ρη2
0 ρη2 γ + ρ2

 , σ31(t) = 03∗3
(59)

σ(x, t)σT (x, t) =

 η21X1 0 0
0 η22X2 ρη2X2
0 ρη2X2 (γ + ρ2)X2

 (60)

r0(t) = r0, r1(t) = [0, 1, 1]; s0(t) = s0, s1(t) = [1, 1, 0] (61)

R0(t) = r0 + s0, R1(t) = [1, 2, 1]; (62)

since R(x, t) = R0(t) +R1(t) · x = r(x, t) + s(x, t).
To obtain the ODEs in their final form we also need to compute the Laplace

transform of jump sizes. This is done below by assuming normal univariate and
bivariate distributions with parameters to be gleaned from the context. Define the
following:

Λ(u;X) =

Z
Ω

euXdFX , (63)

Λ(u, v;X,Y ) =

Z
Ω

euX+vY dFX,Y (64)

Λ0(u, u0;X) =
Z
Ω

euXu0XdFX (65)

Λ0(u, v, u0, v0;X,Y ) =
Z
Ω

euX+vY (u0X + v0Y )dFX,Y (66)

Λ(β 01(t); Js(t)) = exp
·
β 01(t)µJs +

1

2
(β 01(t))

2σ2Js

¸
(67)

Λ(β 03(t); Jr(t)) = exp
·
β 03(t)µJr +

1

2
(β 03(t))

2σ2Jr

¸
(68)

Λ(β 01(t), β
0
3(t); Jsc(t), Jrc(t)) = exp [β

0
1(t)µJsc + β

0
3(t)µJrc]

exp

µ
1

2

£
(β01(t))

2σ2Jsc + (β
0
3(t))

2σ2Jrc
¤¶

exp (β01(t)β
0
3(t)σJscσJrcρJ) (69)
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Λ0(β01(t), β1(t); Js(t)) = β1(t)
£
µJs + β

0
1(t)σ

2
Js

¤
Λ(β01(t); Js(t))

Λ0(β03(t), β3(t);Jr(t)) = β3(t)
£
µJs + β

0
3(t)σ

2
Jr

¤
Λ(β 03(t);Jr(t))

Λ0(β 01(t), β
0
3(t), β1(t),β3(t); Jsc(t), Jrc(t)) = Λ(β

0
1(t),β

0
3(t); Jsc(t), Jrc(t))

{β1(t)Λ001(t) + β3(t)Λ002(t)} (70)

with

Λ001(t) =
£
µJsc + β

0
1(t)σ

2
Jsc + β

0
3(t)σJscσJrcρJ

¤
Λ003(t) =

£
µJrc + β

0
3(t)σ

2
Jrc + β

0
1(t)σJscσJrcρJ

¤
.

∂

∂t
α0(t) = r0 + s0 − k1θ1β01(t)− k2θ2β 02(t)

+ λ10 [1− Λ(β 01(t);Js(t))]
+ λ20 [1− Λ(β 03(t);Jr(t))]
+ λ30 [1− Λ(β 01(t),β 03(t); Jsc(t), Jrc(t))]

with α0(T ) = a0. (71)

∂

∂t
β 01(t) = 1 + k1β

0
1(t)−

1

2
(η1β

0
1(t))

2

+ λ
1,(1)
1 [1− Λ(β 01(t); Js(t))]

+ λ
2,(1)
1 [1− Λ(β 03(t); Jr(t))]

+ λ
3,(1)
1 [1− Λ(β 01(t), β03(t); Jsc(t), Jrc(t))]

with β 01(T ) = b
0
1. (72)

∂

∂t
β02(t) = 2 + k2β

0
2(t)−

1

2
(η2β

0
2(t))

2 − ρη2β 02(t)β03(t)−
1

2
[ρ2 + γ](β03(t))

2

+ λ
1,(2)
1 [1− Λ(β01(t); Js(t))]

+ λ
2,(2)
1 [1− Λ(β03(t); Jr(t))]

+ λ
3,(2)
1 [1− Λ(β01(t), β 03(t);Jsc(t), Jrc(t))]

with β 02(T ) = b
0
2. (73)

∂

∂t
β 03(t) = 1 + k3β

0
3(t)

+ λ
1,(3)
1 [1− Λ(β 01(t); Js(t))]

+ λ
2,(3)
1 [1− Λ(β 03(t); Jr(t))]

+ λ
3,(3)
1 [1− Λ(β 01(t), β03(t); Jsc(t), Jrc(t))]

with β 03(T ) = b
0
3. (74)
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− ∂
∂t
α(t) = k1θ1β1(t) + k2θ2β2(t)

+ λ10Λ
0(β01(t), β1(t); Js(t))

+ λ20Λ
0(β03(t), β3(t); Jr(t))

+ λ30Λ
0(β01(t), β

0
3(t), β1(t),β3(t); Jsc(t), Jrc(t))

with α(T ) = a. (75)

− ∂
∂t
β1(t) = −k1β1(t) + η21β01(t)β1(t)

+ λ
1,(1)
1 Λ0(β 01(t), β1(t); Js(t))

+ λ
2,(1)
1 Λ0(β 03(t), β3(t); Jr(t))

+ λ
3,(1)
1 Λ0(β 01(t), β

0
3(t), β1(t),β3(t); Jsc(t), Jrc(t))

with β1(T ) = b1. (76)

− ∂
∂t
β2(t) = −k2β2(t) + η22β 02(t)β2(t) + ρη2[β2(t)β 03(t) + β02(t)β3(t)]

+ [ρ2 + γ]β 03(t)β3(t)

+ λ
1,(2)
1 Λ0(β 01(t), β1(t); Js(t))

+ λ
2,(2)
1 Λ0(β 03(t), β3(t); Jr(t))

+ λ
3,(2)
1 Λ0(β 01(t), β

0
3(t), β1(t),β3(t); Jsc(t), Jrc(t))

with β2(T ) = b2. (77)

− ∂
∂t
β3(t) = −k3β3(t)

+ λ
1,(3)
1 Λ0(β 01(t), β1(t); Js(t))

+ λ
2,(3)
1 Λ0(β 03(t), β3(t); Jr(t))

+ λ
3,(3)
1 Λ0(β 01(t), β

0
3(t), β1(t),β3(t); Jsc(t), Jrc(t))

with β3(T ) = b3. (78)

Admissibility of the Benchmark Model:
In this section we show that our benchmark model is a special case of the maximal

admissible model defined in Dai and Singleton (1999) hence it is itself admissible. To
do this we begin by reproducing the canonical representation of an admissible affine
model as laid out by Dai and Singleton (1999) in their own notation. Let the vector
of state variables dynamics be defined by

dY (t) = K(Θ− Y (t))dt+ Σ
p
S(t)dW (t) (79)

where W (t) is a N-dimensional vector of independent standard Brownian motions
and S(t) is a diagonal matrix with the ith diagonal element given by [S(t)]ii = αi +
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β 0iY (t). For an arbitrary choice of the parameter vector ψ = (K,Θ,Σ, β,α) where
β = (β1, ..., βN) denotes the matrix of coefficients on Y (t). A specification of ψ is
admissible if the resulting [S(t)]ii are strictly positive, for all i. Note that admissibility
is a feature that refers to conditional variances, hence we do not need concern ourselves
with a jump-diffusion model here as jumps will have no effect on the positivity of
conditional variance terms though they will surely change the set of solutions to the
governing SDEs. Existence and uniqueness of solutions for SDEs characterised by
jump-diffusion processes is a more general issue and beyond the scope of this paper.
Let m = rank(β) index the degree of dependence of the conditional variances on the
number of state variables. Then each affine structure within the family of admissible
N-factor affine models can be classified uniquely into one of N+1 sub-families based
on its value of m. Denote those N-factor affine structures with index value m that are
admissible by Am(N). Now, for each m partition Y (t) as Y 0 = (Y B

0
, Y D

0
) where Y B

is m × 1 and Y D is (N −m) × 1 and define the canonical representation of Am(N)

with K =

·
KBB
m×m 0m×(N−m)

KDB
(N−m)×m KDD

(N−m)×(N−m)

¸
for m > 0, Θ =

·
ΘBm×1
0(N−m)×1

¸
, Σ = I,

α =

·
0m×1

1(N−m)×1

¸
, β =

·
Im×m βDBm×(N−m)

0(N−m)×m 0(N−m)×(N−m)

¸
with the following restric-

tions: KiΘ =
mP
j=1

KijΘj > 0, 1 ≤ i ≤ m, Kij ≤ 0, 1 ≤ j ≤ m, j 6= i, Θi ≥ 0,

1 ≤ i ≤ m, βij ≥ 0, 1 ≤ i ≤ m, m + 1 ≤ j ≤ N. This canonical representation is
admissible and maximal in the sense that, given m, only minimal sufficient condi-
tions for admissibility and minimal normalizations for econometric identification are
imposed. (See the appendix in Dai and Singleton (1999) for the proof that these
conditions are indeed sufficient.) In the case where N = 3, and m = 2 their analysis
shows that the following model is equivalent to the canonical model through invariant
transformations of parameters.

d

 Y1(t)
Y2(t)
Y3(t)

 =

 K11 K12 0
K21 K22 0
0 0 K33

 Θ1 − Y1(t)
Θ2 − Y2(t)
−Y3(t)

 dt
+

 1 0 0
0 1 0
σ31 σ32 1


p
S11(t) 0 0

0
p
S22(t) 0

0 0
p
S33(t)

 dW1(t)
dW2(t)
dW3(t)


(80)

where S11(t) = β11(t)Y1(t), S22(t) = β22(t)Y2(t), S33(t) = α3+ β31Y1(t) + β32Y2(t).
Now setting α3 = 0, β31 = 0, σ31 = 0, K12 = 0, K21 = 0 we obtain a model

that is again admissible since the latter is a subset of the first one. Finally, changing
the notation back to our paper and by setting β11 = η21, β22 = η22, the equivalence
between the diffusion part of (57) and the subset model derived above is established.
Since k1, k2, θ1, θ2, and γ are all greater than zero it is straightforward to verify that
the aforementioned additional parameter restrictions are also satisfied.
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Could State Variables Take Negative Values?
In this section we take up the issue of the signs of the state variables. Recall that

the diffusion part of the benchmark model is guaranteed to be positive, but with the
presence of jump terms with normally distributed jump sizes there is a theoretical
possibility that the first and the third state variables will take negative values. We
would like to show that such an event can happen only with a very small probability.
Empirically this would not pose much of a problem since parameters of the benchmark
model is estimated from real world data and we do not observe negative interest rates
nor negative credit spreads in financial markets. Hence it is to be expected that the
parameter estimates reflect this information and the state variables identified as such
never take negative values. To conduct our analysis we take up credit spreads and
show that they can become negative only with small probabilities. The case and
argumentation for interest rates is the same and not repeated here. Recall that

dX1(t) = k1(θ1 −X1(t))dt+ η1
p
X1(t)dW1(t)

+ Js(t)dN
λs
s (t) + Jsc(t)dN

λ(t) (81)

dX2(t) = k2(θ2 −X2(t))dt+ η2
p
X2(t)dW2(t) (82)

s(t) = s0 +X1(t) +X2(t) (83)

Integrating (81) gives

X1(t) = X1(0) + k1

θ1t− tZ
0

X1(u)du

+ η1 tZ
0

p
X1(u)dW1(u)

+ JsN
λs
s (t) + JscN

λ(t) (84)

where we have eliminated the dependence of jump size terms on time since in the
empirical analysis we assume that jump sizes are identically distributed over time.
Taking expectations (assuming the market is risk-neutral11),

EX1(t) = X1(0) + k1

θ1t− tZ
0

EX1(u)du

+ µJsλst+ µJscλt (85)

and differentiating with respect to t,

∂EX1(t)

∂t
= k1 [θ1 −EX1(t)] + µJsλs + µJscλ (86)

Solving this differential equation gives

EX1(t) =

µ
X1(0)− Z

k1

¶
e−k1t +

Z

k1
(87)

11This is necessary only if we want to make reference to real world credit spreads. If we are
only interested in checking whether the processes for X1 and s can take negative values then the
assumption of market neutrality can be dispensed with.
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where Z = k1θ1+µJsλs+µJscλ.We now obtain the variance ofX1(t) by a similar but a
more involved way. Applying the generalized Ito lemma toX2

1 (t), taking expectations,
and noting the independence between jump size, Poisson, and Brownian motions we
get

EX2
1 (t) = X

2
1 (0) + (2Z + η

2
1)

tZ
0

EX1(u)du

− 2k1
tZ
0

EX2
1 (u)du+ E(J

2
s )λst+ E(J

2
sc)λt (88)

Differentiating with respect to t, and substituting EX1(u) from above gives

∂EX2
1 (t)

∂t
= (2Z + η21)

·µ
X1(0)− Z

k1

¶
e−k1t +

Z

k1

¸
− 2k1EX2

1 (t) + (σ
2
Js + µ

2
Js)λs + (σ

2
Jsc + µ

2
Jsc)λ (89)

Solving this differential equation yields

EX2
1 (t) = X

2
1 (0)e

−2k1t +
1− e−2k1t
2k1

A+
e−k1t − e−2k1t

k1
B (90)

where

A = (σ2Js + µ
2
Js)λs + (σ

2
Jsc + µ

2
Jsc)λ+ (2Z + η

2
1)
Z

k1

and

B = (2Z + η21)

µ
X1(0)− Z

k1

¶
Finally, subtracting [EX1(t)]

2 from (90) we obtain the variance as

V ar[X1(t)] =
η21
k1

·
X1(0)

¡
e−k1t − e−2k1t¢+ Z

2k1

¡
1− e−k1t¢2¸

+
1− e−2k1t
2k1

£
(σ2Js + µ

2
Js)λs + (σ

2
Jsc + µ

2
Jsc)λ

¤
(91)

The mean and the variance of X2(t) is found by setting Z = k2θ2 and λs = 0, λ = 0
in the above formulas, and are not displayed here. The mean of the credit spread is
then

E[s(t)] = s0 +

µ
X1(0)− θ1 − µJsλs + µJscλ

k1

¶
e−k1t + θ1 +

µJsλs + µJscλ

k1

+ (X2(0)− θ2) e−k2t + θ2 (92)
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and the variance is

V ar[s(t)] =
η21
k1

·
X1(0)

¡
e−k1t − e−2k1t¢+ k1θ1 + µJsλs + µJscλ

2k1

¡
1− e−k1t¢2¸

+
1− e−2k1t
2k1

£
(σ2Js + µ

2
Js)λs + (σ

2
Jsc + µ

2
Jsc)λ

¤
+
η22
k2

·
X2(0)

¡
e−k2t − e−2k2t¢+ θ2

2

¡
1− e−k2t¢2¸ (93)

Substituting the estimated parameter values into (92) and (93) we find that the
implied standard deviation of the credit spread is very low compared to its mean as
shown in the table below.

1 week 1 month 3 months 6 months 1 year
mean 0.0266 0.0275 0.0299 0.0331 0.0386
stdev 0.0005 0.001 0.0016 0.0022 0.0029

For instance, one-month ahead mean of credit spread is 27 times bigger than
its standard deviation. That means that even for highly leptokurtic distributions
observing negative credit spreads is very unlikely. By using Chebyshev’s inequality we
can actually pin down this probability even without knowing the true distribution of
s(t). This inequality states that for any random variable with finite variance (standard
deviation of s(t) converges to 0.0047 as t→∞)

Pr(|s− µ| > nσ) ≤ 1

n2
(94)

For values of s below the mean we can take

Pr(s− µ < −nσ) ≤ 1

2n2
(95)

where in fact the upper bound for the probability will be even smaller than this
since the distribution of credit spreads is expected to be positively skewed. In any
case putting n = 27.5 above yields 0.00066. This means that however leptokurtic
the distribution is, as long as its variance is finite, the maximum probability the one
month ahead credit spreads can become negative is 0.00066.
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Figure 1: Bond Value with respect to Spread Jump Intensity The intensity is on a
per-year basis. Both bonds have two years to maturity, and promise to pay $1.
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Figure 2: Bond Value with respect to Interest Rate Jump Intensity The intensity
is on a per-year basis. Both bonds have two years to maturity, and promise to pay $1.



0 2 4 6 8 10
0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96
Riskless Bond   
Defaultable Bond

Figure 3: Bond Value with respect to Common Jump Intensity The intensity is on
a per-year basis. Both bonds have two years to maturity, and promise to pay $1.
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Figure 4: Bond Value with respect to Mean Interest Rate Jump Size Both bonds
have two years to maturity, and promise to pay $1.
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Figure 5: Bond Value with respect to Mean Spread Jump Size The intensity is on a
per-year basis. Both bonds have two years to maturity, and promise to pay $1.
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Figure 6: Bond Value with respect to Maturity The maturity is in years. Both bonds
have two years to maturity, and promise to pay $1.
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Figure 7: Bond Value with respect to Correlation The maturity is in years. Both
bonds have two years to maturity, and promise to pay $1. Correlation is between the
riskless interest rate and the credit spread changes.
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Figure 8: Value of Put Option on Defaultable Bond with respect to Jump Intensity
The intensity is on a per-year basis. The underlying bond has two years to maturity, and
promises to pay $1. The option strike price is 0.95 and maturity is 6 months.



Figure 9: Value of Put Option on Defaultable Bond with respect to Mean Interest
Rate Jump Size The underlying bond has two years to maturity, and promises to pay $1.
The option strike price is 0.95 and maturity is 6 months.



Figure 10: Value of Put Option on Defaultable Bond with respect to Mean Spread
Jump Size The underlying bond has two years to maturity, and promises to pay $1. The
option strike price is 0.95 and maturity is 6 months.



Figure 11: Value of Put Option on Defaultable Bond with respect to Correlation.
The underlying bond has two years to maturity, and promises to pay $1. The option strike
price is 0.95 and maturity is 6 months. Correlation is between the riskless interest rate and
credit spread changes.



Figure 12: Value of Call Option on Credit Spread with respect to Spread Jump
Intensity The intensity is on a per-year basis, The option maturity is 6 months, with
multiplier Q=1, and spread threshold=0.01.



Figure 13: Value of Call Option on Credit Spread with respect to Mean Interest
Rate Jump Size The option maturity is 6 months, with multiplier Q=1, and spread
threshold=0.01.



Figure 14: Value of Call Option on Credit Spread with respect to Mean Spread
Jump Size The option maturity is 6 months, with multiplier Q=1, and spread thresh-
old=0.01.



Figure 15: Value of Call Option on Credit Spread with respect to Spread Thresh-
old The option maturity is 6 months, with multiplier Q set to 1.



Figure 16: Value of Call Option on Credit Spread with respect to Correlation. The
option maturity is 6 months, with multiplier Q=1, and spread threshold=0.01. Correlation
is between the riskless interest rate and credit spread changes.
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Figure 17: Value of Spread Option with respect to Jump Intensity The intensity
is on a per-year basis. Underlying bonds both have two years to maturity with $1 payoff.
Exchange ratio is set to 1. Option maturity is 6 months.



Figure 18: Value of Spread Option with respect to Mean Interest Rate Jump Size
Underlying bonds both have two years to maturity with $1 payoff. Exchange ratio is set to
1. Option maturity is 6 months.



Figure 19: Value of Spread Option with respect to Mean Spread Jump Size Un-
derlying bonds both have two years to maturity with $1 payoff. Exchange ratio is set to 1.
Option maturity is 6 months.



Figure 20: Value of Spread Option with respect to Correlation Underlying bonds
both have two years to maturity with $1 payoff. Exchange ratio is set to 1. Option maturity
is 6 months. Correlation is between the riskless interest rate and credit spread changes.
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Figure 21: Mean Absolute Hedging Errors with respect to Correlation Defining
Parameters I. The trader hedges a put option on the defaultable bond, and ignores the
correlation between the credit spread and the riskless interest rate. The option has a strike
price of 0.95, and a maturity of 6 months. The underlying bond promises to pay $1 at
maturity after two years. See the corresponding put option values in Table I for a relative
assessment of the hedging errors.
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Figure 22: Mean Absolute Hedging Errors with respect to Correlation Defining
Parameters II. The trader hedges a put option on the defaultable bond, and totally ignores
default risk. The option has a strike price of 0.95, and a maturity of 6 months. The
underlying bond promises to pay $1 at maturity after two years. See the corresponding put
option values in Table I for a relative assessment of the hedging errors.
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Figure 23: Mean Absolute Hedging Errors with respect to Correlation Defining
Parameters III. The trader hedges a put option on the defaultable bond, and ignores the
correlation between the credit spread and the riskless interest rate. The option has a strike
price of 0.95, and a maturity of 1 year. The underlying bond promises to pay $1 at maturity
after two years. See the corresponding put option values in Table I for a relative assessment
of the hedging errors.
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Figure 24: Mean Absolute Hedging Errors with respect to Correlation Defining
Parameters IV. The trader hedges a put option on the defaultable bond, and totally
ignores default risk. The option has a strike price of 0.95, and a maturity of 1 year. The
underlying bond promises to pay $1 at maturity after two years. See the corresponding put
option values in Table I for a relative assessment of the hedging errors.



Table I. 

T=0.5 ρ1 / ρ2        -1         -0.75       -0.50       -0.25         0           0.25          0.50           0.75          1
-1     0.0419    0.0445    0.0472    0.0498    0.0524    0.0550    0.0576   0.0601    0.0627

-0.75     0.0461    0.0487    0.0514    0.0540    0.0565    0.0591    0.0617   0.0642    0.0667
-0.5     0.0503    0.0529    0.0555    0.0581    0.0607    0.0632    0.0657   0.0683    0.0708
-0.25     0.0545    0.0571    0.0597    0.0622    0.0648    0.0673    0.0698   0.0723    0.0748

0     0.0586    0.0612    0.0638    0.0663    0.0688    0.0714    0.0738   0.0763    0.0788
0.25     0.0628    0.0653    0.0679    0.0704    0.0729    0.0754    0.0779   0.0803    0.0828
0.5     0.0669    0.0694    0.0719    0.0744    0.0769    0.0794    0.0819   0.0843    0.0867
0.75     0.0710    0.0735    0.0760    0.0785    0.0810    0.0834    0.0858   0.0883    0.0907

1     0.0751    0.0776    0.0800    0.0825    0.0850    0.0874    0.0898   0.0922    0.0946

T=1 ρ1 / ρ2        -1         -0.75       -0.50       -0.25         0           0.25          0.50           0.75          1
-1     0.0565    0.0580    0.0596    0.0611    0.0626    0.0640    0.0655   0.0670    0.0684

-0.75     0.0607    0.0622    0.0637    0.0652    0.0667    0.0682    0.0696   0.0710    0.0725
-0.5     0.0649    0.0664    0.0679    0.0694    0.0708    0.0722    0.0737   0.0751    0.0765
-0.25     0.0691    0.0706    0.0720    0.0735    0.0749    0.0763    0.0777   0.0791    0.0805

0     0.0733    0.0747    0.0761    0.0776    0.0790    0.0804    0.0818   0.0832    0.0845
0.25     0.0774    0.0788    0.0802    0.0816    0.0830    0.0844    0.0858   0.0872    0.0885
0.5     0.0815    0.0829    0.0843    0.0857    0.0871    0.0884    0.0898   0.0911    0.0925
0.75     0.0856    0.0870    0.0884    0.0897    0.0911    0.0924    0.0938   0.0951    0.0964

1     0.0897    0.0911    0.0924    0.0938    0.0951    0.0964    0.0977   0.0990    0.1003

In this table, values of the put option on the defaultable bond are shown. The option has a strike of 0.95, and maturities of
6 months, and 1 year respectively. The underlying bond pays $1 at the maturity of two years. 

Put Option Values


